Properties

Label 980.1.bq.a.879.1
Level $980$
Weight $1$
Character 980.879
Analytic conductor $0.489$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,1,Mod(39,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 21, 34]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.39");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 980.bq (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.489083712380\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} + \cdots)\)

Embedding invariants

Embedding label 879.1
Root \(0.955573 - 0.294755i\) of defining polynomial
Character \(\chi\) \(=\) 980.879
Dual form 980.1.bq.a.359.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.365341 + 0.930874i) q^{2} +(-0.123490 + 1.64786i) q^{3} +(-0.733052 - 0.680173i) q^{4} +(0.826239 + 0.563320i) q^{5} +(-1.48883 - 0.716983i) q^{6} +(0.733052 + 0.680173i) q^{7} +(0.900969 - 0.433884i) q^{8} +(-1.71135 - 0.257945i) q^{9} +(-0.826239 + 0.563320i) q^{10} +(1.21135 - 1.12397i) q^{12} +(-0.900969 + 0.433884i) q^{14} +(-1.03030 + 1.29196i) q^{15} +(0.0747301 + 0.997204i) q^{16} +(0.865341 - 1.49881i) q^{18} +(-0.222521 - 0.974928i) q^{20} +(-1.21135 + 1.12397i) q^{21} +(-0.142820 + 0.0440542i) q^{23} +(0.603718 + 1.53825i) q^{24} +(0.365341 + 0.930874i) q^{25} +(0.268680 - 1.17716i) q^{27} +(-0.0747301 - 0.997204i) q^{28} +(-0.425270 - 1.86323i) q^{29} +(-0.826239 - 1.43109i) q^{30} +(-0.955573 - 0.294755i) q^{32} +(0.222521 + 0.974928i) q^{35} +(1.07906 + 1.35310i) q^{36} +(0.988831 + 0.149042i) q^{40} +(1.78181 - 0.858075i) q^{41} +(-0.603718 - 1.53825i) q^{42} +(-1.78181 - 0.858075i) q^{43} +(-1.26868 - 1.17716i) q^{45} +(0.0111692 - 0.149042i) q^{46} +(0.658322 - 1.67738i) q^{47} -1.65248 q^{48} +(0.0747301 + 0.997204i) q^{49} -1.00000 q^{50} +(0.997630 + 0.680173i) q^{54} +(0.955573 + 0.294755i) q^{56} +(1.88980 + 0.284841i) q^{58} +(1.63402 - 0.246289i) q^{60} +(-0.109562 + 0.101659i) q^{61} +(-1.07906 - 1.35310i) q^{63} +(0.623490 - 0.781831i) q^{64} +(-0.500000 + 0.866025i) q^{67} +(-0.0549581 - 0.240787i) q^{69} +(-0.988831 - 0.149042i) q^{70} +(-1.65379 + 0.510127i) q^{72} +(-1.57906 + 0.487076i) q^{75} +(-0.500000 + 0.866025i) q^{80} +(0.252824 + 0.0779858i) q^{81} +(0.147791 + 1.97213i) q^{82} +(0.914101 - 1.14625i) q^{83} +1.65248 q^{84} +(1.44973 - 1.34515i) q^{86} +(3.12285 - 0.470694i) q^{87} +(-1.88980 - 0.284841i) q^{89} +(1.55929 - 0.750915i) q^{90} +(0.134659 + 0.0648483i) q^{92} +(1.32091 + 1.22563i) q^{94} +(0.603718 - 1.53825i) q^{96} +(-0.955573 - 0.294755i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{2} + 8 q^{3} + q^{4} + q^{5} - 5 q^{6} - q^{7} + 2 q^{8} - 7 q^{9} - q^{10} + q^{12} - 2 q^{14} - 2 q^{15} + q^{16} + 7 q^{18} - 2 q^{20} - q^{21} + q^{23} - q^{24} + q^{25} - 12 q^{27}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{11}{21}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(3\) −0.123490 + 1.64786i −0.123490 + 1.64786i 0.500000 + 0.866025i \(0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(4\) −0.733052 0.680173i −0.733052 0.680173i
\(5\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(6\) −1.48883 0.716983i −1.48883 0.716983i
\(7\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(8\) 0.900969 0.433884i 0.900969 0.433884i
\(9\) −1.71135 0.257945i −1.71135 0.257945i
\(10\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(11\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(12\) 1.21135 1.12397i 1.21135 1.12397i
\(13\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(14\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(15\) −1.03030 + 1.29196i −1.03030 + 1.29196i
\(16\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(17\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(18\) 0.865341 1.49881i 0.865341 1.49881i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) −0.222521 0.974928i −0.222521 0.974928i
\(21\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(22\) 0 0
\(23\) −0.142820 + 0.0440542i −0.142820 + 0.0440542i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(24\) 0.603718 + 1.53825i 0.603718 + 1.53825i
\(25\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(26\) 0 0
\(27\) 0.268680 1.17716i 0.268680 1.17716i
\(28\) −0.0747301 0.997204i −0.0747301 0.997204i
\(29\) −0.425270 1.86323i −0.425270 1.86323i −0.500000 0.866025i \(-0.666667\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(30\) −0.826239 1.43109i −0.826239 1.43109i
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) −0.955573 0.294755i −0.955573 0.294755i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(36\) 1.07906 + 1.35310i 1.07906 + 1.35310i
\(37\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(41\) 1.78181 0.858075i 1.78181 0.858075i 0.826239 0.563320i \(-0.190476\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(42\) −0.603718 1.53825i −0.603718 1.53825i
\(43\) −1.78181 0.858075i −1.78181 0.858075i −0.955573 0.294755i \(-0.904762\pi\)
−0.826239 0.563320i \(-0.809524\pi\)
\(44\) 0 0
\(45\) −1.26868 1.17716i −1.26868 1.17716i
\(46\) 0.0111692 0.149042i 0.0111692 0.149042i
\(47\) 0.658322 1.67738i 0.658322 1.67738i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(48\) −1.65248 −1.65248
\(49\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(54\) 0.997630 + 0.680173i 0.997630 + 0.680173i
\(55\) 0 0
\(56\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(57\) 0 0
\(58\) 1.88980 + 0.284841i 1.88980 + 0.284841i
\(59\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(60\) 1.63402 0.246289i 1.63402 0.246289i
\(61\) −0.109562 + 0.101659i −0.109562 + 0.101659i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(62\) 0 0
\(63\) −1.07906 1.35310i −1.07906 1.35310i
\(64\) 0.623490 0.781831i 0.623490 0.781831i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) −0.0549581 0.240787i −0.0549581 0.240787i
\(70\) −0.988831 0.149042i −0.988831 0.149042i
\(71\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(72\) −1.65379 + 0.510127i −1.65379 + 0.510127i
\(73\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(74\) 0 0
\(75\) −1.57906 + 0.487076i −1.57906 + 0.487076i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(81\) 0.252824 + 0.0779858i 0.252824 + 0.0779858i
\(82\) 0.147791 + 1.97213i 0.147791 + 1.97213i
\(83\) 0.914101 1.14625i 0.914101 1.14625i −0.0747301 0.997204i \(-0.523810\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(84\) 1.65248 1.65248
\(85\) 0 0
\(86\) 1.44973 1.34515i 1.44973 1.34515i
\(87\) 3.12285 0.470694i 3.12285 0.470694i
\(88\) 0 0
\(89\) −1.88980 0.284841i −1.88980 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(90\) 1.55929 0.750915i 1.55929 0.750915i
\(91\) 0 0
\(92\) 0.134659 + 0.0648483i 0.134659 + 0.0648483i
\(93\) 0 0
\(94\) 1.32091 + 1.22563i 1.32091 + 1.22563i
\(95\) 0 0
\(96\) 0.603718 1.53825i 0.603718 1.53825i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.955573 0.294755i −0.955573 0.294755i
\(99\) 0 0
\(100\) 0.365341 0.930874i 0.365341 0.930874i
\(101\) −0.109562 + 1.46200i −0.109562 + 1.46200i 0.623490 + 0.781831i \(0.285714\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(102\) 0 0
\(103\) 0.826239 + 0.563320i 0.826239 + 0.563320i 0.900969 0.433884i \(-0.142857\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(104\) 0 0
\(105\) −1.63402 + 0.246289i −1.63402 + 0.246289i
\(106\) 0 0
\(107\) −1.44973 0.218511i −1.44973 0.218511i −0.623490 0.781831i \(-0.714286\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(108\) −0.997630 + 0.680173i −0.997630 + 0.680173i
\(109\) 0.988831 0.149042i 0.988831 0.149042i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(113\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(114\) 0 0
\(115\) −0.142820 0.0440542i −0.142820 0.0440542i
\(116\) −0.955573 + 1.65510i −0.955573 + 1.65510i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.367711 + 1.61105i −0.367711 + 1.61105i
\(121\) 0.955573 0.294755i 0.955573 0.294755i
\(122\) −0.0546039 0.139129i −0.0546039 0.139129i
\(123\) 1.19395 + 3.04213i 1.19395 + 3.04213i
\(124\) 0 0
\(125\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(126\) 1.65379 0.510127i 1.65379 0.510127i
\(127\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(128\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(129\) 1.63402 2.83021i 1.63402 2.83021i
\(130\) 0 0
\(131\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.623490 0.781831i −0.623490 0.781831i
\(135\) 0.885113 0.821265i 0.885113 0.821265i
\(136\) 0 0
\(137\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(138\) 0.244221 + 0.0368104i 0.244221 + 0.0368104i
\(139\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 0.500000 0.866025i 0.500000 0.866025i
\(141\) 2.68278 + 1.29196i 2.68278 + 1.29196i
\(142\) 0 0
\(143\) 0 0
\(144\) 0.129334 1.72584i 0.129334 1.72584i
\(145\) 0.698220 1.77904i 0.698220 1.77904i
\(146\) 0 0
\(147\) −1.65248 −1.65248
\(148\) 0 0
\(149\) −0.535628 + 1.36476i −0.535628 + 1.36476i 0.365341 + 0.930874i \(0.380952\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(150\) 0.123490 1.64786i 0.123490 1.64786i
\(151\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.623490 0.781831i −0.623490 0.781831i
\(161\) −0.134659 0.0648483i −0.134659 0.0648483i
\(162\) −0.164962 + 0.206856i −0.164962 + 0.206856i
\(163\) 0.0332580 + 0.443797i 0.0332580 + 0.443797i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(164\) −1.88980 0.582926i −1.88980 0.582926i
\(165\) 0 0
\(166\) 0.733052 + 1.26968i 0.733052 + 1.26968i
\(167\) 0.162592 + 0.712362i 0.162592 + 0.712362i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(168\) −0.603718 + 1.53825i −0.603718 + 1.53825i
\(169\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.722521 + 1.84095i 0.722521 + 1.84095i
\(173\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(174\) −0.702749 + 3.07894i −0.702749 + 3.07894i
\(175\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(176\) 0 0
\(177\) 0 0
\(178\) 0.955573 1.65510i 0.955573 1.65510i
\(179\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(180\) 0.129334 + 1.72584i 0.129334 + 1.72584i
\(181\) −0.623490 + 0.781831i −0.623490 + 0.781831i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(182\) 0 0
\(183\) −0.153989 0.193096i −0.153989 0.193096i
\(184\) −0.109562 + 0.101659i −0.109562 + 0.101659i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(189\) 0.997630 0.680173i 0.997630 0.680173i
\(190\) 0 0
\(191\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(192\) 1.21135 + 1.12397i 1.21135 + 1.12397i
\(193\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.623490 0.781831i 0.623490 0.781831i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(200\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(201\) −1.36534 0.930874i −1.36534 0.930874i
\(202\) −1.32091 0.636119i −1.32091 0.636119i
\(203\) 0.955573 1.65510i 0.955573 1.65510i
\(204\) 0 0
\(205\) 1.95557 + 0.294755i 1.95557 + 0.294755i
\(206\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(207\) 0.255779 0.0385525i 0.255779 0.0385525i
\(208\) 0 0
\(209\) 0 0
\(210\) 0.367711 1.61105i 0.367711 1.61105i
\(211\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.733052 1.26968i 0.733052 1.26968i
\(215\) −0.988831 1.71271i −0.988831 1.71271i
\(216\) −0.268680 1.17716i −0.268680 1.17716i
\(217\) 0 0
\(218\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(224\) −0.500000 0.866025i −0.500000 0.866025i
\(225\) −0.385113 1.68729i −0.385113 1.68729i
\(226\) 0 0
\(227\) 0.623490 1.07992i 0.623490 1.07992i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(228\) 0 0
\(229\) −0.0332580 0.443797i −0.0332580 0.443797i −0.988831 0.149042i \(-0.952381\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(230\) 0.0931869 0.116853i 0.0931869 0.116853i
\(231\) 0 0
\(232\) −1.19158 1.49419i −1.19158 1.49419i
\(233\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(234\) 0 0
\(235\) 1.48883 1.01507i 1.48883 1.01507i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(240\) −1.36534 0.930874i −1.36534 0.930874i
\(241\) −0.914101 0.848162i −0.914101 0.848162i 0.0747301 0.997204i \(-0.476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(242\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(243\) 0.281395 0.716983i 0.281395 0.716983i
\(244\) 0.149460 0.149460
\(245\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(246\) −3.26804 −3.26804
\(247\) 0 0
\(248\) 0 0
\(249\) 1.77597 + 1.64786i 1.77597 + 1.64786i
\(250\) −0.826239 0.563320i −0.826239 0.563320i
\(251\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(252\) −0.129334 + 1.72584i −0.129334 + 1.72584i
\(253\) 0 0
\(254\) −1.23305 0.185853i −1.23305 0.185853i
\(255\) 0 0
\(256\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(257\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(258\) 2.03759 + 2.55506i 2.03759 + 2.55506i
\(259\) 0 0
\(260\) 0 0
\(261\) 0.247176 + 3.29834i 0.247176 + 3.29834i
\(262\) 0 0
\(263\) 0.955573 1.65510i 0.955573 1.65510i 0.222521 0.974928i \(-0.428571\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.702749 3.07894i 0.702749 3.07894i
\(268\) 0.955573 0.294755i 0.955573 0.294755i
\(269\) 0.266948 + 0.680173i 0.266948 + 0.680173i 1.00000 \(0\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(270\) 0.441126 + 1.12397i 0.441126 + 1.12397i
\(271\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −0.123490 + 0.213891i −0.123490 + 0.213891i
\(277\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(281\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(282\) −2.18278 + 2.02532i −2.18278 + 2.02532i
\(283\) −1.78181 + 0.268565i −1.78181 + 0.268565i −0.955573 0.294755i \(-0.904762\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.88980 + 0.582926i 1.88980 + 0.582926i
\(288\) 1.55929 + 0.750915i 1.55929 + 0.750915i
\(289\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(290\) 1.40097 + 1.29991i 1.40097 + 1.29991i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.603718 1.53825i 0.603718 1.53825i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −1.07473 0.997204i −1.07473 0.997204i
\(299\) 0 0
\(300\) 1.48883 + 0.716983i 1.48883 + 0.716983i
\(301\) −0.722521 1.84095i −0.722521 1.84095i
\(302\) 0 0
\(303\) −2.39564 0.361085i −2.39564 0.361085i
\(304\) 0 0
\(305\) −0.147791 + 0.0222759i −0.147791 + 0.0222759i
\(306\) 0 0
\(307\) −0.455573 0.571270i −0.455573 0.571270i 0.500000 0.866025i \(-0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(308\) 0 0
\(309\) −1.03030 + 1.29196i −1.03030 + 1.29196i
\(310\) 0 0
\(311\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(312\) 0 0
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0 0
\(315\) −0.129334 1.72584i −0.129334 1.72584i
\(316\) 0 0
\(317\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.955573 0.294755i 0.955573 0.294755i
\(321\) 0.539102 2.36196i 0.539102 2.36196i
\(322\) 0.109562 0.101659i 0.109562 0.101659i
\(323\) 0 0
\(324\) −0.132289 0.229132i −0.132289 0.229132i
\(325\) 0 0
\(326\) −0.425270 0.131178i −0.425270 0.131178i
\(327\) 0.123490 + 1.64786i 0.123490 + 1.64786i
\(328\) 1.23305 1.54620i 1.23305 1.54620i
\(329\) 1.62349 0.781831i 1.62349 0.781831i
\(330\) 0 0
\(331\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(332\) −1.44973 + 0.218511i −1.44973 + 0.218511i
\(333\) 0 0
\(334\) −0.722521 0.108903i −0.722521 0.108903i
\(335\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(336\) −1.21135 1.12397i −1.21135 1.12397i
\(337\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(338\) −0.826239 0.563320i −0.826239 0.563320i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(344\) −1.97766 −1.97766
\(345\) 0.0902318 0.229907i 0.0902318 0.229907i
\(346\) 0 0
\(347\) −1.44973 1.34515i −1.44973 1.34515i −0.826239 0.563320i \(-0.809524\pi\)
−0.623490 0.781831i \(-0.714286\pi\)
\(348\) −2.60937 1.77904i −2.60937 1.77904i
\(349\) 1.78181 + 0.858075i 1.78181 + 0.858075i 0.955573 + 0.294755i \(0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(350\) −0.733052 0.680173i −0.733052 0.680173i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(360\) −1.65379 0.510127i −1.65379 0.510127i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) −0.500000 0.866025i −0.500000 0.866025i
\(363\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.236007 0.0727985i 0.236007 0.0727985i
\(367\) −0.266948 0.680173i −0.266948 0.680173i 0.733052 0.680173i \(-0.238095\pi\)
−1.00000 \(\pi\)
\(368\) −0.0546039 0.139129i −0.0546039 0.139129i
\(369\) −3.27064 + 1.00886i −3.27064 + 1.00886i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −1.57906 0.487076i −1.57906 0.487076i
\(376\) −0.134659 1.79690i −0.134659 1.79690i
\(377\) 0 0
\(378\) 0.268680 + 1.17716i 0.268680 + 1.17716i
\(379\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(380\) 0 0
\(381\) −2.03759 + 0.307117i −2.03759 + 0.307117i
\(382\) 0 0
\(383\) 1.88980 + 0.284841i 1.88980 + 0.284841i 0.988831 0.149042i \(-0.0476190\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(384\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(385\) 0 0
\(386\) 0 0
\(387\) 2.82797 + 1.92808i 2.82797 + 1.92808i
\(388\) 0 0
\(389\) −0.0332580 + 0.443797i −0.0332580 + 0.443797i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(401\) −1.63402 0.246289i −1.63402 0.246289i −0.733052 0.680173i \(-0.761905\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(402\) 1.36534 0.930874i 1.36534 0.930874i
\(403\) 0 0
\(404\) 1.07473 0.997204i 1.07473 0.997204i
\(405\) 0.164962 + 0.206856i 0.164962 + 0.206856i
\(406\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(407\) 0 0
\(408\) 0 0
\(409\) 0.698220 + 0.215372i 0.698220 + 0.215372i 0.623490 0.781831i \(-0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(410\) −0.988831 + 1.71271i −0.988831 + 1.71271i
\(411\) 0 0
\(412\) −0.222521 0.974928i −0.222521 0.974928i
\(413\) 0 0
\(414\) −0.0575591 + 0.252183i −0.0575591 + 0.252183i
\(415\) 1.40097 0.432142i 1.40097 0.432142i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(420\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(421\) −0.367711 1.61105i −0.367711 1.61105i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(422\) 0 0
\(423\) −1.55929 + 2.70077i −1.55929 + 2.70077i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.149460 −0.149460
\(428\) 0.914101 + 1.14625i 0.914101 + 1.14625i
\(429\) 0 0
\(430\) 1.95557 0.294755i 1.95557 0.294755i
\(431\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(432\) 1.19395 + 0.179959i 1.19395 + 0.179959i
\(433\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) 0 0
\(435\) 2.84537 + 1.37026i 2.84537 + 1.37026i
\(436\) −0.826239 0.563320i −0.826239 0.563320i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(440\) 0 0
\(441\) 0.129334 1.72584i 0.129334 1.72584i
\(442\) 0 0
\(443\) −0.698220 + 1.77904i −0.698220 + 1.77904i −0.0747301 + 0.997204i \(0.523810\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(444\) 0 0
\(445\) −1.40097 1.29991i −1.40097 1.29991i
\(446\) 1.03030 + 0.702449i 1.03030 + 0.702449i
\(447\) −2.18278 1.05117i −2.18278 1.05117i
\(448\) 0.988831 0.149042i 0.988831 0.149042i
\(449\) −0.134659 + 0.0648483i −0.134659 + 0.0648483i −0.500000 0.866025i \(-0.666667\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(450\) 1.71135 + 0.257945i 1.71135 + 0.257945i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(458\) 0.425270 + 0.131178i 0.425270 + 0.131178i
\(459\) 0 0
\(460\) 0.0747301 + 0.129436i 0.0747301 + 0.129436i
\(461\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(462\) 0 0
\(463\) −0.326239 + 1.42935i −0.326239 + 1.42935i 0.500000 + 0.866025i \(0.333333\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(464\) 1.82624 0.563320i 1.82624 0.563320i
\(465\) 0 0
\(466\) 0 0
\(467\) 0.955573 0.294755i 0.955573 0.294755i 0.222521 0.974928i \(-0.428571\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(468\) 0 0
\(469\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(470\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(480\) 1.36534 0.930874i 1.36534 0.930874i
\(481\) 0 0
\(482\) 1.12349 0.541044i 1.12349 0.541044i
\(483\) 0.123490 0.213891i 0.123490 0.213891i
\(484\) −0.900969 0.433884i −0.900969 0.433884i
\(485\) 0 0
\(486\) 0.564616 + 0.523887i 0.564616 + 0.523887i
\(487\) 0.134659 1.79690i 0.134659 1.79690i −0.365341 0.930874i \(-0.619048\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(488\) −0.0546039 + 0.139129i −0.0546039 + 0.139129i
\(489\) −0.735422 −0.735422
\(490\) −0.623490 0.781831i −0.623490 0.781831i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 1.19395 3.04213i 1.19395 3.04213i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −2.18278 + 1.05117i −2.18278 + 1.05117i
\(499\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(500\) 0.826239 0.563320i 0.826239 0.563320i
\(501\) −1.19395 + 0.179959i −1.19395 + 0.179959i
\(502\) 0 0
\(503\) 1.23305 + 1.54620i 1.23305 + 1.54620i 0.733052 + 0.680173i \(0.238095\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −1.55929 0.750915i −1.55929 0.750915i
\(505\) −0.914101 + 1.14625i −0.914101 + 1.14625i
\(506\) 0 0
\(507\) −1.57906 0.487076i −1.57906 0.487076i
\(508\) 0.623490 1.07992i 0.623490 1.07992i
\(509\) −0.0747301 0.129436i −0.0747301 0.129436i 0.826239 0.563320i \(-0.190476\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.222521 0.974928i 0.222521 0.974928i
\(513\) 0 0
\(514\) 0 0
\(515\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(516\) −3.12285 + 0.963272i −3.12285 + 0.963272i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.222521 0.385418i 0.222521 0.385418i −0.733052 0.680173i \(-0.761905\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(522\) −3.16064 0.974928i −3.16064 0.974928i
\(523\) 0.0332580 + 0.443797i 0.0332580 + 0.443797i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(524\) 0 0
\(525\) −1.48883 0.716983i −1.48883 0.716983i
\(526\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.807782 + 0.550736i −0.807782 + 0.550736i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 2.60937 + 1.77904i 2.60937 + 1.77904i
\(535\) −1.07473 0.997204i −1.07473 0.997204i
\(536\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(537\) 0 0
\(538\) −0.730682 −0.730682
\(539\) 0 0
\(540\) −1.20744 −1.20744
\(541\) 0.603718 1.53825i 0.603718 1.53825i −0.222521 0.974928i \(-0.571429\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(542\) 0 0
\(543\) −1.21135 1.12397i −1.21135 1.12397i
\(544\) 0 0
\(545\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(546\) 0 0
\(547\) 0.134659 0.0648483i 0.134659 0.0648483i −0.365341 0.930874i \(-0.619048\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(548\) 0 0
\(549\) 0.213722 0.145713i 0.213722 0.145713i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.153989 0.193096i −0.153989 0.193096i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(561\) 0 0
\(562\) 1.72188 0.531130i 1.72188 0.531130i
\(563\) −0.698220 1.77904i −0.698220 1.77904i −0.623490 0.781831i \(-0.714286\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(564\) −1.08786 2.77183i −1.08786 2.77183i
\(565\) 0 0
\(566\) 0.400969 1.75676i 0.400969 1.75676i
\(567\) 0.132289 + 0.229132i 0.132289 + 0.229132i
\(568\) 0 0
\(569\) −0.623490 1.07992i −0.623490 1.07992i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(570\) 0 0
\(571\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.23305 + 1.54620i −1.23305 + 1.54620i
\(575\) −0.0931869 0.116853i −0.0931869 0.116853i
\(576\) −1.26868 + 1.17716i −1.26868 + 1.17716i
\(577\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(578\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(579\) 0 0
\(580\) −1.72188 + 0.829215i −1.72188 + 0.829215i
\(581\) 1.44973 0.218511i 1.44973 0.218511i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(588\) 1.21135 + 1.12397i 1.21135 + 1.12397i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.32091 0.636119i 1.32091 0.636119i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(600\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(601\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(602\) 1.97766 1.97766
\(603\) 1.07906 1.35310i 1.07906 1.35310i
\(604\) 0 0
\(605\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(606\) 1.21135 2.09812i 1.21135 2.09812i
\(607\) 0.955573 + 1.65510i 0.955573 + 1.65510i 0.733052 + 0.680173i \(0.238095\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(608\) 0 0
\(609\) 2.60937 + 1.77904i 2.60937 + 1.77904i
\(610\) 0.0332580 0.145713i 0.0332580 0.145713i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(614\) 0.698220 0.215372i 0.698220 0.215372i
\(615\) −0.727208 + 3.18610i −0.727208 + 3.18610i
\(616\) 0 0
\(617\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(618\) −0.826239 1.43109i −0.826239 1.43109i
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0.0134861 + 0.179959i 0.0134861 + 0.179959i
\(622\) 0 0
\(623\) −1.19158 1.49419i −1.19158 1.49419i
\(624\) 0 0
\(625\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(631\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.455573 + 1.16078i −0.455573 + 1.16078i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(641\) −1.21135 1.12397i −1.21135 1.12397i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(642\) 2.00173 + 1.36476i 2.00173 + 1.36476i
\(643\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(644\) 0.0546039 + 0.139129i 0.0546039 + 0.139129i
\(645\) 2.94440 1.41795i 2.94440 1.41795i
\(646\) 0 0
\(647\) −0.603718 + 0.411608i −0.603718 + 0.411608i −0.826239 0.563320i \(-0.809524\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(648\) 0.261623 0.0394334i 0.261623 0.0394334i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.277479 0.347948i 0.277479 0.347948i
\(653\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(654\) −1.57906 0.487076i −1.57906 0.487076i
\(655\) 0 0
\(656\) 0.988831 + 1.71271i 0.988831 + 1.71271i
\(657\) 0 0
\(658\) 0.134659 + 1.79690i 0.134659 + 1.79690i
\(659\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(660\) 0 0
\(661\) −0.535628 1.36476i −0.535628 1.36476i −0.900969 0.433884i \(-0.857143\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.326239 1.42935i 0.326239 1.42935i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.142820 + 0.247372i 0.142820 + 0.247372i
\(668\) 0.365341 0.632789i 0.365341 0.632789i
\(669\) 1.96906 + 0.607374i 1.96906 + 0.607374i
\(670\) −0.0747301 0.997204i −0.0747301 0.997204i
\(671\) 0 0
\(672\) 1.48883 0.716983i 1.48883 0.716983i
\(673\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(674\) 0 0
\(675\) 1.19395 0.179959i 1.19395 0.179959i
\(676\) 0.826239 0.563320i 0.826239 0.563320i
\(677\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.70255 + 1.16078i 1.70255 + 1.16078i
\(682\) 0 0
\(683\) −0.0546039 + 0.728639i −0.0546039 + 0.728639i 0.900969 + 0.433884i \(0.142857\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.500000 0.866025i −0.500000 0.866025i
\(687\) 0.735422 0.735422
\(688\) 0.722521 1.84095i 0.722521 1.84095i
\(689\) 0 0
\(690\) 0.181049 + 0.167989i 0.181049 + 0.167989i
\(691\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.78181 0.858075i 1.78181 0.858075i
\(695\) 0 0
\(696\) 2.60937 1.77904i 2.60937 1.77904i
\(697\) 0 0
\(698\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(699\) 0 0
\(700\) 0.900969 0.433884i 0.900969 0.433884i
\(701\) 1.03030 1.29196i 1.03030 1.29196i 0.0747301 0.997204i \(-0.476190\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.48883 + 2.57873i 1.48883 + 2.57873i
\(706\) 0 0
\(707\) −1.07473 + 0.997204i −1.07473 + 0.997204i
\(708\) 0 0
\(709\) −1.40097 + 0.432142i −1.40097 + 0.432142i −0.900969 0.433884i \(-0.857143\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.82624 + 0.563320i −1.82624 + 0.563320i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(720\) 1.07906 1.35310i 1.07906 1.35310i
\(721\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(722\) −0.623490 0.781831i −0.623490 0.781831i
\(723\) 1.51053 1.40157i 1.51053 1.40157i
\(724\) 0.988831 0.149042i 0.988831 0.149042i
\(725\) 1.57906 1.07659i 1.57906 1.07659i
\(726\) −1.63402 0.246289i −1.63402 0.246289i
\(727\) −1.32091 + 0.636119i −1.32091 + 0.636119i −0.955573 0.294755i \(-0.904762\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(728\) 0 0
\(729\) 1.38511 + 0.667035i 1.38511 + 0.667035i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.0184568 + 0.246289i −0.0184568 + 0.246289i
\(733\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(734\) 0.730682 0.730682
\(735\) −1.36534 0.930874i −1.36534 0.930874i
\(736\) 0.149460 0.149460
\(737\) 0 0
\(738\) 0.255779 3.41313i 0.255779 3.41313i
\(739\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.658322 0.317031i 0.658322 0.317031i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(744\) 0 0
\(745\) −1.21135 + 0.825886i −1.21135 + 0.825886i
\(746\) 0 0
\(747\) −1.86002 + 1.72584i −1.86002 + 1.72584i
\(748\) 0 0
\(749\) −0.914101 1.14625i −0.914101 1.14625i
\(750\) 1.03030 1.29196i 1.03030 1.29196i
\(751\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(752\) 1.72188 + 0.531130i 1.72188 + 0.531130i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −1.19395 0.179959i −1.19395 0.179959i
\(757\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.19158 0.367554i 1.19158 0.367554i 0.365341 0.930874i \(-0.380952\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(762\) 0.458528 2.00894i 0.458528 2.00894i
\(763\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(764\) 0 0
\(765\) 0 0
\(766\) −0.955573 + 1.65510i −0.955573 + 1.65510i
\(767\) 0 0
\(768\) −0.123490 1.64786i −0.123490 1.64786i
\(769\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(774\) −2.82797 + 1.92808i −2.82797 + 1.92808i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.400969 0.193096i −0.400969 0.193096i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.30759 −2.30759
\(784\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.142820 + 1.90580i −0.142820 + 1.90580i 0.222521 + 0.974928i \(0.428571\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(788\) 0 0
\(789\) 2.60937 + 1.77904i 2.60937 + 1.77904i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.0747301 0.997204i −0.0747301 0.997204i
\(801\) 3.16064 + 0.974928i 3.16064 + 0.974928i
\(802\) 0.826239 1.43109i 0.826239 1.43109i
\(803\) 0 0
\(804\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(805\) −0.0747301 0.129436i −0.0747301 0.129436i
\(806\) 0 0
\(807\) −1.15379 + 0.355898i −1.15379 + 0.355898i
\(808\) 0.535628 + 1.36476i 0.535628 + 1.36476i
\(809\) −0.365341 0.930874i −0.365341 0.930874i −0.988831 0.149042i \(-0.952381\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(810\) −0.252824 + 0.0779858i −0.252824 + 0.0779858i
\(811\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(812\) −1.82624 + 0.563320i −1.82624 + 0.563320i
\(813\) 0 0
\(814\) 0 0
\(815\) −0.222521 + 0.385418i −0.222521 + 0.385418i
\(816\) 0 0
\(817\) 0 0
\(818\) −0.455573 + 0.571270i −0.455573 + 0.571270i
\(819\) 0 0
\(820\) −1.23305 1.54620i −1.23305 1.54620i
\(821\) −0.914101 + 0.848162i −0.914101 + 0.848162i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(822\) 0 0
\(823\) −0.603718 + 0.411608i −0.603718 + 0.411608i −0.826239 0.563320i \(-0.809524\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(824\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(825\) 0 0
\(826\) 0 0
\(827\) 1.48883 + 0.716983i 1.48883 + 0.716983i 0.988831 0.149042i \(-0.0476190\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) −0.213722 0.145713i −0.213722 0.145713i
\(829\) 0.326239 + 0.302705i 0.326239 + 0.302705i 0.826239 0.563320i \(-0.190476\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) −0.109562 + 1.46200i −0.109562 + 1.46200i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.266948 + 0.680173i −0.266948 + 0.680173i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(840\) −1.36534 + 0.930874i −1.36534 + 0.930874i
\(841\) −2.38980 + 1.15087i −2.38980 + 1.15087i
\(842\) 1.63402 + 0.246289i 1.63402 + 0.246289i
\(843\) 2.46026 1.67738i 2.46026 1.67738i
\(844\) 0 0
\(845\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(846\) −1.94440 2.43821i −1.94440 2.43821i
\(847\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(848\) 0 0
\(849\) −0.222521 2.96934i −0.222521 2.96934i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(854\) 0.0546039 0.139129i 0.0546039 0.139129i
\(855\) 0 0
\(856\) −1.40097 + 0.432142i −1.40097 + 0.432142i
\(857\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(858\) 0 0
\(859\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(860\) −0.440071 + 1.92808i −0.440071 + 1.92808i
\(861\) −1.19395 + 3.04213i −1.19395 + 3.04213i
\(862\) 0 0
\(863\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(864\) −0.603718 + 1.04567i −0.603718 + 1.04567i
\(865\) 0 0
\(866\) 0 0
\(867\) −1.03030 + 1.29196i −1.03030 + 1.29196i
\(868\) 0 0
\(869\) 0 0
\(870\) −2.31507 + 2.14807i −2.31507 + 2.14807i
\(871\) 0 0
\(872\) 0.826239 0.563320i 0.826239 0.563320i
\(873\) 0 0
\(874\) 0 0
\(875\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(876\) 0 0
\(877\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 1.55929 + 0.750915i 1.55929 + 0.750915i
\(883\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.40097 1.29991i −1.40097 1.29991i
\(887\) −0.123490 0.0841939i −0.123490 0.0841939i 0.500000 0.866025i \(-0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(888\) 0 0
\(889\) −0.623490 + 1.07992i −0.623490 + 1.07992i
\(890\) 1.72188 0.829215i 1.72188 0.829215i
\(891\) 0 0
\(892\) −1.03030 + 0.702449i −1.03030 + 0.702449i
\(893\) 0 0
\(894\) 1.77597 1.64786i 1.77597 1.64786i
\(895\) 0 0
\(896\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(897\) 0 0
\(898\) −0.0111692 0.149042i −0.0111692 0.149042i
\(899\) 0 0
\(900\) −0.865341 + 1.49881i −0.865341 + 1.49881i
\(901\) 0 0
\(902\) 0 0
\(903\) 3.12285 0.963272i 3.12285 0.963272i
\(904\) 0 0
\(905\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(906\) 0 0
\(907\) −0.603718 1.53825i −0.603718 1.53825i −0.826239 0.563320i \(-0.809524\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(908\) −1.19158 + 0.367554i −1.19158 + 0.367554i
\(909\) 0.564616 2.47374i 0.564616 2.47374i
\(910\) 0 0
\(911\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −0.0184568 0.246289i −0.0184568 0.246289i
\(916\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(920\) −0.147791 + 0.0222759i −0.147791 + 0.0222759i
\(921\) 0.997630 0.680173i 0.997630 0.680173i
\(922\) −1.78181 0.268565i −1.78181 0.268565i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −1.21135 0.825886i −1.21135 0.825886i
\(927\) −1.26868 1.17716i −1.26868 1.17716i
\(928\) −0.142820 + 1.90580i −0.142820 + 1.90580i
\(929\) 0.0546039 0.139129i 0.0546039 0.139129i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(938\) 0.0747301 0.997204i 0.0747301 0.997204i
\(939\) 0 0
\(940\) −1.78181 0.268565i −1.78181 0.268565i
\(941\) −0.367711 + 0.250701i −0.367711 + 0.250701i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(942\) 0 0
\(943\) −0.216677 + 0.201047i −0.216677 + 0.201047i
\(944\) 0 0
\(945\) 1.20744 1.20744
\(946\) 0 0
\(947\) −0.0546039 0.728639i −0.0546039 0.728639i −0.955573 0.294755i \(-0.904762\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 2.42463 + 0.747900i 2.42463 + 0.747900i
\(964\) 0.0931869 + 1.24349i 0.0931869 + 1.24349i
\(965\) 0 0
\(966\) 0.153989 + 0.193096i 0.153989 + 0.193096i
\(967\) −1.03030 1.29196i −1.03030 1.29196i −0.955573 0.294755i \(-0.904762\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(968\) 0.733052 0.680173i 0.733052 0.680173i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(972\) −0.693950 + 0.334189i −0.693950 + 0.334189i
\(973\) 0 0
\(974\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(975\) 0 0
\(976\) −0.109562 0.101659i −0.109562 0.101659i
\(977\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(978\) 0.268680 0.684585i 0.268680 0.684585i
\(979\) 0 0
\(980\) 0.955573 0.294755i 0.955573 0.294755i
\(981\) −1.73068 −1.73068
\(982\) 0 0
\(983\) −0.0111692 + 0.149042i −0.0111692 + 0.149042i 0.988831 + 0.149042i \(0.0476190\pi\)
−1.00000 \(\pi\)
\(984\) 2.39564 + 2.22283i 2.39564 + 2.22283i
\(985\) 0 0
\(986\) 0 0
\(987\) 1.08786 + 2.77183i 1.08786 + 2.77183i
\(988\) 0 0
\(989\) 0.292280 + 0.0440542i 0.292280 + 0.0440542i
\(990\) 0 0
\(991\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −0.181049 2.41593i −0.181049 2.41593i
\(997\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.1.bq.a.879.1 yes 12
4.3 odd 2 980.1.bq.b.879.1 yes 12
5.4 even 2 980.1.bq.b.879.1 yes 12
20.19 odd 2 CM 980.1.bq.a.879.1 yes 12
49.16 even 21 inner 980.1.bq.a.359.1 12
196.163 odd 42 980.1.bq.b.359.1 yes 12
245.114 even 42 980.1.bq.b.359.1 yes 12
980.359 odd 42 inner 980.1.bq.a.359.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.1.bq.a.359.1 12 49.16 even 21 inner
980.1.bq.a.359.1 12 980.359 odd 42 inner
980.1.bq.a.879.1 yes 12 1.1 even 1 trivial
980.1.bq.a.879.1 yes 12 20.19 odd 2 CM
980.1.bq.b.359.1 yes 12 196.163 odd 42
980.1.bq.b.359.1 yes 12 245.114 even 42
980.1.bq.b.879.1 yes 12 4.3 odd 2
980.1.bq.b.879.1 yes 12 5.4 even 2