Properties

Label 980.2.bd.a.169.14
Level $980$
Weight $2$
Character 980.169
Analytic conductor $7.825$
Analytic rank $0$
Dimension $168$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(29,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 7, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.bd (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(28\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 169.14
Character \(\chi\) \(=\) 980.169
Dual form 980.2.bd.a.29.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.332725 - 0.0759423i) q^{3} +(-2.22696 - 0.201644i) q^{5} +(2.62035 - 0.365762i) q^{7} +(-2.59797 - 1.25112i) q^{9} +(-2.15292 + 1.03679i) q^{11} +(2.62135 + 5.44329i) q^{13} +(0.725651 + 0.236212i) q^{15} +(4.75577 - 3.79260i) q^{17} -5.33478 q^{19} +(-0.899631 - 0.0772969i) q^{21} +(5.09974 + 4.06691i) q^{23} +(4.91868 + 0.898104i) q^{25} +(1.56987 + 1.25193i) q^{27} +(1.23433 + 1.54780i) q^{29} +7.15404 q^{31} +(0.795064 - 0.181468i) q^{33} +(-5.90915 + 0.286160i) q^{35} +(-4.79848 + 3.82666i) q^{37} +(-0.458813 - 2.01019i) q^{39} +(0.899666 - 3.94169i) q^{41} +(6.77863 - 1.54718i) q^{43} +(5.53328 + 3.31005i) q^{45} +(-0.788580 - 1.63750i) q^{47} +(6.73244 - 1.91685i) q^{49} +(-1.87038 + 0.900727i) q^{51} +(3.31926 + 2.64702i) q^{53} +(5.00351 - 1.87476i) q^{55} +(1.77501 + 0.405135i) q^{57} +(2.13782 + 9.36639i) q^{59} +(8.60315 + 10.7880i) q^{61} +(-7.26519 - 2.32812i) q^{63} +(-4.74003 - 12.6506i) q^{65} +8.80941i q^{67} +(-1.38796 - 1.74045i) q^{69} +(-4.00099 + 5.01708i) q^{71} +(-0.989387 + 2.05448i) q^{73} +(-1.56836 - 0.672357i) q^{75} +(-5.26217 + 3.50420i) q^{77} +2.15058 q^{79} +(4.96629 + 6.22753i) q^{81} +(7.68593 - 15.9600i) q^{83} +(-11.3556 + 7.48698i) q^{85} +(-0.293148 - 0.608728i) q^{87} +(-15.5807 - 7.50326i) q^{89} +(8.85980 + 13.3045i) q^{91} +(-2.38033 - 0.543294i) q^{93} +(11.8803 + 1.07572i) q^{95} +9.31644i q^{97} +6.89035 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q + 2 q^{5} + 18 q^{9} + 6 q^{11} + 16 q^{15} + 20 q^{19} - 6 q^{21} + 6 q^{25} - 14 q^{29} + 20 q^{31} + 2 q^{35} + 40 q^{39} - 14 q^{41} + 96 q^{45} + 32 q^{49} + 4 q^{51} - 30 q^{55} - 28 q^{59}+ \cdots + 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.332725 0.0759423i −0.192099 0.0438453i 0.125389 0.992108i \(-0.459982\pi\)
−0.317488 + 0.948262i \(0.602839\pi\)
\(4\) 0 0
\(5\) −2.22696 0.201644i −0.995926 0.0901779i
\(6\) 0 0
\(7\) 2.62035 0.365762i 0.990398 0.138245i
\(8\) 0 0
\(9\) −2.59797 1.25112i −0.865989 0.417038i
\(10\) 0 0
\(11\) −2.15292 + 1.03679i −0.649128 + 0.312604i −0.729317 0.684176i \(-0.760162\pi\)
0.0801886 + 0.996780i \(0.474448\pi\)
\(12\) 0 0
\(13\) 2.62135 + 5.44329i 0.727032 + 1.50970i 0.855398 + 0.517971i \(0.173312\pi\)
−0.128366 + 0.991727i \(0.540973\pi\)
\(14\) 0 0
\(15\) 0.725651 + 0.236212i 0.187362 + 0.0609897i
\(16\) 0 0
\(17\) 4.75577 3.79260i 1.15344 0.919840i 0.155754 0.987796i \(-0.450219\pi\)
0.997688 + 0.0679561i \(0.0216478\pi\)
\(18\) 0 0
\(19\) −5.33478 −1.22388 −0.611941 0.790904i \(-0.709611\pi\)
−0.611941 + 0.790904i \(0.709611\pi\)
\(20\) 0 0
\(21\) −0.899631 0.0772969i −0.196316 0.0168676i
\(22\) 0 0
\(23\) 5.09974 + 4.06691i 1.06337 + 0.848009i 0.988806 0.149207i \(-0.0476721\pi\)
0.0745638 + 0.997216i \(0.476244\pi\)
\(24\) 0 0
\(25\) 4.91868 + 0.898104i 0.983736 + 0.179621i
\(26\) 0 0
\(27\) 1.56987 + 1.25193i 0.302121 + 0.240934i
\(28\) 0 0
\(29\) 1.23433 + 1.54780i 0.229209 + 0.287419i 0.883115 0.469157i \(-0.155442\pi\)
−0.653906 + 0.756576i \(0.726871\pi\)
\(30\) 0 0
\(31\) 7.15404 1.28490 0.642452 0.766326i \(-0.277917\pi\)
0.642452 + 0.766326i \(0.277917\pi\)
\(32\) 0 0
\(33\) 0.795064 0.181468i 0.138403 0.0315896i
\(34\) 0 0
\(35\) −5.90915 + 0.286160i −0.998829 + 0.0483699i
\(36\) 0 0
\(37\) −4.79848 + 3.82666i −0.788865 + 0.629099i −0.932761 0.360494i \(-0.882608\pi\)
0.143897 + 0.989593i \(0.454037\pi\)
\(38\) 0 0
\(39\) −0.458813 2.01019i −0.0734688 0.321888i
\(40\) 0 0
\(41\) 0.899666 3.94169i 0.140504 0.615589i −0.854814 0.518935i \(-0.826329\pi\)
0.995318 0.0966544i \(-0.0308142\pi\)
\(42\) 0 0
\(43\) 6.77863 1.54718i 1.03373 0.235943i 0.328191 0.944611i \(-0.393561\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(44\) 0 0
\(45\) 5.53328 + 3.31005i 0.824853 + 0.493432i
\(46\) 0 0
\(47\) −0.788580 1.63750i −0.115026 0.238854i 0.835505 0.549482i \(-0.185175\pi\)
−0.950532 + 0.310628i \(0.899461\pi\)
\(48\) 0 0
\(49\) 6.73244 1.91685i 0.961777 0.273835i
\(50\) 0 0
\(51\) −1.87038 + 0.900727i −0.261905 + 0.126127i
\(52\) 0 0
\(53\) 3.31926 + 2.64702i 0.455935 + 0.363596i 0.824364 0.566060i \(-0.191533\pi\)
−0.368429 + 0.929656i \(0.620104\pi\)
\(54\) 0 0
\(55\) 5.00351 1.87476i 0.674674 0.252793i
\(56\) 0 0
\(57\) 1.77501 + 0.405135i 0.235106 + 0.0536614i
\(58\) 0 0
\(59\) 2.13782 + 9.36639i 0.278320 + 1.21940i 0.899917 + 0.436062i \(0.143627\pi\)
−0.621597 + 0.783338i \(0.713516\pi\)
\(60\) 0 0
\(61\) 8.60315 + 10.7880i 1.10152 + 1.38126i 0.917215 + 0.398394i \(0.130432\pi\)
0.184306 + 0.982869i \(0.440996\pi\)
\(62\) 0 0
\(63\) −7.26519 2.32812i −0.915328 0.293315i
\(64\) 0 0
\(65\) −4.74003 12.6506i −0.587929 1.56911i
\(66\) 0 0
\(67\) 8.80941i 1.07624i 0.842868 + 0.538121i \(0.180865\pi\)
−0.842868 + 0.538121i \(0.819135\pi\)
\(68\) 0 0
\(69\) −1.38796 1.74045i −0.167091 0.209525i
\(70\) 0 0
\(71\) −4.00099 + 5.01708i −0.474830 + 0.595418i −0.960346 0.278810i \(-0.910060\pi\)
0.485516 + 0.874228i \(0.338632\pi\)
\(72\) 0 0
\(73\) −0.989387 + 2.05448i −0.115799 + 0.240459i −0.950810 0.309774i \(-0.899747\pi\)
0.835011 + 0.550233i \(0.185461\pi\)
\(74\) 0 0
\(75\) −1.56836 0.672357i −0.181099 0.0776371i
\(76\) 0 0
\(77\) −5.26217 + 3.50420i −0.599680 + 0.399341i
\(78\) 0 0
\(79\) 2.15058 0.241959 0.120979 0.992655i \(-0.461396\pi\)
0.120979 + 0.992655i \(0.461396\pi\)
\(80\) 0 0
\(81\) 4.96629 + 6.22753i 0.551810 + 0.691948i
\(82\) 0 0
\(83\) 7.68593 15.9600i 0.843640 1.75184i 0.210842 0.977520i \(-0.432379\pi\)
0.632798 0.774317i \(-0.281906\pi\)
\(84\) 0 0
\(85\) −11.3556 + 7.48698i −1.23169 + 0.812077i
\(86\) 0 0
\(87\) −0.293148 0.608728i −0.0314288 0.0652625i
\(88\) 0 0
\(89\) −15.5807 7.50326i −1.65155 0.795344i −0.999303 0.0373359i \(-0.988113\pi\)
−0.652245 0.758008i \(-0.726173\pi\)
\(90\) 0 0
\(91\) 8.85980 + 13.3045i 0.928759 + 1.39469i
\(92\) 0 0
\(93\) −2.38033 0.543294i −0.246828 0.0563370i
\(94\) 0 0
\(95\) 11.8803 + 1.07572i 1.21890 + 0.110367i
\(96\) 0 0
\(97\) 9.31644i 0.945941i 0.881078 + 0.472971i \(0.156818\pi\)
−0.881078 + 0.472971i \(0.843182\pi\)
\(98\) 0 0
\(99\) 6.89035 0.692506
\(100\) 0 0
\(101\) 2.96073 12.9718i 0.294604 1.29074i −0.583438 0.812158i \(-0.698293\pi\)
0.878041 0.478585i \(-0.158850\pi\)
\(102\) 0 0
\(103\) 14.4513 + 3.29841i 1.42393 + 0.325002i 0.863980 0.503527i \(-0.167965\pi\)
0.559946 + 0.828529i \(0.310822\pi\)
\(104\) 0 0
\(105\) 1.98785 + 0.353542i 0.193995 + 0.0345022i
\(106\) 0 0
\(107\) 2.03295 4.22146i 0.196533 0.408104i −0.779292 0.626662i \(-0.784421\pi\)
0.975824 + 0.218558i \(0.0701351\pi\)
\(108\) 0 0
\(109\) −7.72178 + 3.71861i −0.739613 + 0.356179i −0.765457 0.643487i \(-0.777487\pi\)
0.0258441 + 0.999666i \(0.491773\pi\)
\(110\) 0 0
\(111\) 1.88718 0.908817i 0.179123 0.0862610i
\(112\) 0 0
\(113\) −4.04829 + 8.40636i −0.380831 + 0.790803i 0.619154 + 0.785270i \(0.287476\pi\)
−0.999985 + 0.00553370i \(0.998239\pi\)
\(114\) 0 0
\(115\) −10.5368 10.0852i −0.982566 0.940446i
\(116\) 0 0
\(117\) 17.4211i 1.61058i
\(118\) 0 0
\(119\) 11.0746 11.6774i 1.01520 1.07047i
\(120\) 0 0
\(121\) −3.29828 + 4.13591i −0.299843 + 0.375991i
\(122\) 0 0
\(123\) −0.598682 + 1.24318i −0.0539814 + 0.112093i
\(124\) 0 0
\(125\) −10.7726 2.99186i −0.963530 0.267600i
\(126\) 0 0
\(127\) 7.02620 5.60320i 0.623474 0.497204i −0.260047 0.965596i \(-0.583738\pi\)
0.883521 + 0.468392i \(0.155167\pi\)
\(128\) 0 0
\(129\) −2.37292 −0.208924
\(130\) 0 0
\(131\) −1.38302 6.05939i −0.120835 0.529412i −0.998722 0.0505439i \(-0.983905\pi\)
0.877887 0.478868i \(-0.158953\pi\)
\(132\) 0 0
\(133\) −13.9790 + 1.95126i −1.21213 + 0.169196i
\(134\) 0 0
\(135\) −3.24359 3.10455i −0.279164 0.267197i
\(136\) 0 0
\(137\) −8.24497 + 1.88186i −0.704415 + 0.160778i −0.559700 0.828695i \(-0.689084\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(138\) 0 0
\(139\) 4.54794 19.9258i 0.385751 1.69009i −0.293319 0.956014i \(-0.594760\pi\)
0.679071 0.734073i \(-0.262383\pi\)
\(140\) 0 0
\(141\) 0.138024 + 0.604724i 0.0116237 + 0.0509270i
\(142\) 0 0
\(143\) −11.2871 9.00116i −0.943874 0.752715i
\(144\) 0 0
\(145\) −2.43669 3.69578i −0.202356 0.306917i
\(146\) 0 0
\(147\) −2.38562 + 0.126506i −0.196762 + 0.0104341i
\(148\) 0 0
\(149\) −13.3617 + 6.43464i −1.09463 + 0.527146i −0.891966 0.452103i \(-0.850674\pi\)
−0.202664 + 0.979248i \(0.564960\pi\)
\(150\) 0 0
\(151\) −7.77462 + 9.74907i −0.632690 + 0.793368i −0.990068 0.140592i \(-0.955099\pi\)
0.357378 + 0.933960i \(0.383671\pi\)
\(152\) 0 0
\(153\) −17.1003 + 3.90303i −1.38248 + 0.315541i
\(154\) 0 0
\(155\) −15.9317 1.44257i −1.27967 0.115870i
\(156\) 0 0
\(157\) 0.425653 0.0971525i 0.0339708 0.00775361i −0.205502 0.978657i \(-0.565883\pi\)
0.239473 + 0.970903i \(0.423025\pi\)
\(158\) 0 0
\(159\) −0.903379 1.13280i −0.0716426 0.0898370i
\(160\) 0 0
\(161\) 14.8506 + 8.79142i 1.17039 + 0.692861i
\(162\) 0 0
\(163\) 5.00396 1.14212i 0.391940 0.0894578i −0.0220090 0.999758i \(-0.507006\pi\)
0.413949 + 0.910300i \(0.364149\pi\)
\(164\) 0 0
\(165\) −1.80717 + 0.243802i −0.140688 + 0.0189800i
\(166\) 0 0
\(167\) −0.445777 + 0.355495i −0.0344953 + 0.0275091i −0.640586 0.767887i \(-0.721308\pi\)
0.606090 + 0.795396i \(0.292737\pi\)
\(168\) 0 0
\(169\) −14.6526 + 18.3738i −1.12712 + 1.41337i
\(170\) 0 0
\(171\) 13.8596 + 6.67442i 1.05987 + 0.510406i
\(172\) 0 0
\(173\) −4.31139 3.43821i −0.327789 0.261403i 0.445742 0.895161i \(-0.352940\pi\)
−0.773531 + 0.633759i \(0.781511\pi\)
\(174\) 0 0
\(175\) 13.2171 + 0.554279i 0.999122 + 0.0418995i
\(176\) 0 0
\(177\) 3.27878i 0.246448i
\(178\) 0 0
\(179\) 9.26293 + 11.6153i 0.692344 + 0.868171i 0.996426 0.0844744i \(-0.0269211\pi\)
−0.304082 + 0.952646i \(0.598350\pi\)
\(180\) 0 0
\(181\) −3.48283 1.67724i −0.258877 0.124669i 0.299944 0.953957i \(-0.403032\pi\)
−0.558821 + 0.829288i \(0.688746\pi\)
\(182\) 0 0
\(183\) −2.04321 4.24278i −0.151039 0.313635i
\(184\) 0 0
\(185\) 11.4576 7.55422i 0.842381 0.555397i
\(186\) 0 0
\(187\) −6.30664 + 13.0959i −0.461187 + 0.957665i
\(188\) 0 0
\(189\) 4.57151 + 2.70629i 0.332528 + 0.196854i
\(190\) 0 0
\(191\) 1.16153 5.08900i 0.0840454 0.368227i −0.915363 0.402630i \(-0.868096\pi\)
0.999408 + 0.0344034i \(0.0109531\pi\)
\(192\) 0 0
\(193\) −19.8795 4.53736i −1.43096 0.326606i −0.564324 0.825553i \(-0.690863\pi\)
−0.866633 + 0.498947i \(0.833720\pi\)
\(194\) 0 0
\(195\) 0.616414 + 4.56912i 0.0441423 + 0.327202i
\(196\) 0 0
\(197\) 0.970401i 0.0691382i 0.999402 + 0.0345691i \(0.0110059\pi\)
−0.999402 + 0.0345691i \(0.988994\pi\)
\(198\) 0 0
\(199\) 3.63743 15.9366i 0.257851 1.12972i −0.665693 0.746226i \(-0.731864\pi\)
0.923544 0.383493i \(-0.125279\pi\)
\(200\) 0 0
\(201\) 0.669007 2.93111i 0.0471881 0.206745i
\(202\) 0 0
\(203\) 3.80049 + 3.60430i 0.266742 + 0.252972i
\(204\) 0 0
\(205\) −2.79834 + 8.59657i −0.195444 + 0.600411i
\(206\) 0 0
\(207\) −8.16079 16.9461i −0.567214 1.17783i
\(208\) 0 0
\(209\) 11.4853 5.53104i 0.794456 0.382590i
\(210\) 0 0
\(211\) 8.28130 + 3.98807i 0.570108 + 0.274550i 0.696650 0.717412i \(-0.254673\pi\)
−0.126541 + 0.991961i \(0.540388\pi\)
\(212\) 0 0
\(213\) 1.71224 1.36546i 0.117320 0.0935600i
\(214\) 0 0
\(215\) −15.4077 + 2.07863i −1.05080 + 0.141762i
\(216\) 0 0
\(217\) 18.7461 2.61668i 1.27257 0.177632i
\(218\) 0 0
\(219\) 0.485215 0.608441i 0.0327878 0.0411146i
\(220\) 0 0
\(221\) 33.1107 + 15.9453i 2.22727 + 1.07260i
\(222\) 0 0
\(223\) 1.74204 + 1.38923i 0.116655 + 0.0930295i 0.680080 0.733138i \(-0.261945\pi\)
−0.563425 + 0.826167i \(0.690516\pi\)
\(224\) 0 0
\(225\) −11.6549 8.48708i −0.776996 0.565806i
\(226\) 0 0
\(227\) 5.15626i 0.342233i 0.985251 + 0.171117i \(0.0547375\pi\)
−0.985251 + 0.171117i \(0.945263\pi\)
\(228\) 0 0
\(229\) −4.69852 20.5856i −0.310487 1.36033i −0.853712 0.520746i \(-0.825654\pi\)
0.543225 0.839587i \(-0.317203\pi\)
\(230\) 0 0
\(231\) 2.01697 0.766314i 0.132707 0.0504198i
\(232\) 0 0
\(233\) 9.58805 7.64621i 0.628134 0.500920i −0.256905 0.966437i \(-0.582703\pi\)
0.885039 + 0.465516i \(0.154131\pi\)
\(234\) 0 0
\(235\) 1.42594 + 3.80566i 0.0930182 + 0.248254i
\(236\) 0 0
\(237\) −0.715550 0.163320i −0.0464800 0.0106088i
\(238\) 0 0
\(239\) 1.02671 + 4.49832i 0.0664126 + 0.290972i 0.997218 0.0745431i \(-0.0237498\pi\)
−0.930805 + 0.365516i \(0.880893\pi\)
\(240\) 0 0
\(241\) 7.48771 9.38930i 0.482326 0.604818i −0.479815 0.877370i \(-0.659296\pi\)
0.962141 + 0.272552i \(0.0878676\pi\)
\(242\) 0 0
\(243\) −3.79311 7.87647i −0.243328 0.505276i
\(244\) 0 0
\(245\) −15.3794 + 2.91118i −0.982552 + 0.185989i
\(246\) 0 0
\(247\) −13.9843 29.0387i −0.889801 1.84769i
\(248\) 0 0
\(249\) −3.76934 + 4.72660i −0.238872 + 0.299536i
\(250\) 0 0
\(251\) −0.306205 1.34157i −0.0193275 0.0846794i 0.964344 0.264651i \(-0.0852567\pi\)
−0.983672 + 0.179971i \(0.942400\pi\)
\(252\) 0 0
\(253\) −15.1958 3.46835i −0.955354 0.218053i
\(254\) 0 0
\(255\) 4.34688 1.62873i 0.272212 0.101995i
\(256\) 0 0
\(257\) −22.4685 + 17.9180i −1.40155 + 1.11770i −0.424317 + 0.905514i \(0.639486\pi\)
−0.977230 + 0.212183i \(0.931943\pi\)
\(258\) 0 0
\(259\) −11.1740 + 11.7823i −0.694320 + 0.732115i
\(260\) 0 0
\(261\) −1.27027 5.56542i −0.0786278 0.344491i
\(262\) 0 0
\(263\) 6.02698i 0.371640i −0.982584 0.185820i \(-0.940506\pi\)
0.982584 0.185820i \(-0.0594941\pi\)
\(264\) 0 0
\(265\) −6.85810 6.56411i −0.421289 0.403230i
\(266\) 0 0
\(267\) 4.61426 + 3.67975i 0.282388 + 0.225197i
\(268\) 0 0
\(269\) −3.04962 1.46862i −0.185938 0.0895432i 0.338598 0.940931i \(-0.390047\pi\)
−0.524537 + 0.851388i \(0.675761\pi\)
\(270\) 0 0
\(271\) −12.1366 + 15.2188i −0.737247 + 0.924479i −0.999175 0.0406086i \(-0.987070\pi\)
0.261928 + 0.965087i \(0.415642\pi\)
\(272\) 0 0
\(273\) −1.93750 5.09958i −0.117263 0.308640i
\(274\) 0 0
\(275\) −11.5206 + 3.16609i −0.694721 + 0.190923i
\(276\) 0 0
\(277\) 3.19881 2.55097i 0.192198 0.153273i −0.522663 0.852539i \(-0.675061\pi\)
0.714861 + 0.699267i \(0.246490\pi\)
\(278\) 0 0
\(279\) −18.5860 8.95053i −1.11271 0.535854i
\(280\) 0 0
\(281\) −14.0884 + 6.78464i −0.840446 + 0.404737i −0.804022 0.594599i \(-0.797311\pi\)
−0.0364236 + 0.999336i \(0.511597\pi\)
\(282\) 0 0
\(283\) 6.77162 + 14.0614i 0.402531 + 0.835865i 0.999437 + 0.0335533i \(0.0106824\pi\)
−0.596906 + 0.802311i \(0.703603\pi\)
\(284\) 0 0
\(285\) −3.87118 1.26014i −0.229309 0.0746442i
\(286\) 0 0
\(287\) 0.915715 10.6577i 0.0540529 0.629102i
\(288\) 0 0
\(289\) 4.45066 19.4996i 0.261804 1.14704i
\(290\) 0 0
\(291\) 0.707512 3.09981i 0.0414751 0.181714i
\(292\) 0 0
\(293\) 26.2811i 1.53536i −0.640833 0.767680i \(-0.721411\pi\)
0.640833 0.767680i \(-0.278589\pi\)
\(294\) 0 0
\(295\) −2.87215 21.2896i −0.167223 1.23953i
\(296\) 0 0
\(297\) −4.67778 1.06767i −0.271432 0.0619527i
\(298\) 0 0
\(299\) −8.76916 + 38.4202i −0.507133 + 2.22190i
\(300\) 0 0
\(301\) 17.1965 6.53351i 0.991188 0.376585i
\(302\) 0 0
\(303\) −1.97022 + 4.09120i −0.113186 + 0.235033i
\(304\) 0 0
\(305\) −16.9835 25.7592i −0.972473 1.47497i
\(306\) 0 0
\(307\) 6.89782 + 14.3235i 0.393680 + 0.817484i 0.999756 + 0.0220779i \(0.00702819\pi\)
−0.606077 + 0.795406i \(0.707258\pi\)
\(308\) 0 0
\(309\) −4.55781 2.19492i −0.259285 0.124865i
\(310\) 0 0
\(311\) 9.97538 + 12.5087i 0.565652 + 0.709305i 0.979591 0.201000i \(-0.0644190\pi\)
−0.413940 + 0.910304i \(0.635848\pi\)
\(312\) 0 0
\(313\) 21.1368i 1.19472i 0.801972 + 0.597361i \(0.203784\pi\)
−0.801972 + 0.597361i \(0.796216\pi\)
\(314\) 0 0
\(315\) 15.7098 + 6.64960i 0.885148 + 0.374663i
\(316\) 0 0
\(317\) 18.6795 + 14.8964i 1.04914 + 0.836663i 0.986890 0.161397i \(-0.0516000\pi\)
0.0622531 + 0.998060i \(0.480171\pi\)
\(318\) 0 0
\(319\) −4.26214 2.05254i −0.238634 0.114920i
\(320\) 0 0
\(321\) −0.996999 + 1.25020i −0.0556471 + 0.0697792i
\(322\) 0 0
\(323\) −25.3709 + 20.2327i −1.41168 + 1.12577i
\(324\) 0 0
\(325\) 8.00494 + 29.1281i 0.444034 + 1.61573i
\(326\) 0 0
\(327\) 2.85163 0.650866i 0.157695 0.0359929i
\(328\) 0 0
\(329\) −2.66529 4.00239i −0.146942 0.220659i
\(330\) 0 0
\(331\) −19.6703 24.6658i −1.08118 1.35575i −0.930131 0.367228i \(-0.880307\pi\)
−0.151048 0.988526i \(-0.548265\pi\)
\(332\) 0 0
\(333\) 17.2539 3.93809i 0.945507 0.215806i
\(334\) 0 0
\(335\) 1.77636 19.6182i 0.0970531 1.07186i
\(336\) 0 0
\(337\) −3.64126 + 0.831095i −0.198352 + 0.0452726i −0.320543 0.947234i \(-0.603865\pi\)
0.122190 + 0.992507i \(0.461008\pi\)
\(338\) 0 0
\(339\) 1.98536 2.48957i 0.107830 0.135215i
\(340\) 0 0
\(341\) −15.4020 + 7.41723i −0.834068 + 0.401666i
\(342\) 0 0
\(343\) 16.9402 7.48528i 0.914685 0.404167i
\(344\) 0 0
\(345\) 2.73998 + 4.15578i 0.147515 + 0.223739i
\(346\) 0 0
\(347\) −9.91010 7.90304i −0.532002 0.424257i 0.320293 0.947318i \(-0.396219\pi\)
−0.852295 + 0.523061i \(0.824790\pi\)
\(348\) 0 0
\(349\) −4.07420 17.8502i −0.218087 0.955501i −0.958890 0.283778i \(-0.908412\pi\)
0.740803 0.671722i \(-0.234445\pi\)
\(350\) 0 0
\(351\) −2.69944 + 11.8270i −0.144085 + 0.631279i
\(352\) 0 0
\(353\) 13.3927 3.05679i 0.712820 0.162696i 0.149291 0.988793i \(-0.452301\pi\)
0.563528 + 0.826097i \(0.309444\pi\)
\(354\) 0 0
\(355\) 9.92169 10.3661i 0.526589 0.550173i
\(356\) 0 0
\(357\) −4.57159 + 3.04433i −0.241954 + 0.161123i
\(358\) 0 0
\(359\) −6.02335 26.3900i −0.317900 1.39281i −0.841228 0.540681i \(-0.818167\pi\)
0.523327 0.852132i \(-0.324690\pi\)
\(360\) 0 0
\(361\) 9.45983 0.497886
\(362\) 0 0
\(363\) 1.41151 1.12564i 0.0740849 0.0590808i
\(364\) 0 0
\(365\) 2.61760 4.37574i 0.137011 0.229037i
\(366\) 0 0
\(367\) −3.42527 + 7.11265i −0.178798 + 0.371277i −0.971035 0.238935i \(-0.923202\pi\)
0.792238 + 0.610212i \(0.208916\pi\)
\(368\) 0 0
\(369\) −7.26882 + 9.11481i −0.378400 + 0.474498i
\(370\) 0 0
\(371\) 9.66579 + 5.72206i 0.501823 + 0.297074i
\(372\) 0 0
\(373\) 0.578508i 0.0299540i 0.999888 + 0.0149770i \(0.00476750\pi\)
−0.999888 + 0.0149770i \(0.995232\pi\)
\(374\) 0 0
\(375\) 3.35710 + 1.81356i 0.173360 + 0.0936519i
\(376\) 0 0
\(377\) −5.18951 + 10.7761i −0.267273 + 0.554999i
\(378\) 0 0
\(379\) 8.44698 4.06785i 0.433892 0.208952i −0.204171 0.978935i \(-0.565450\pi\)
0.638064 + 0.769984i \(0.279736\pi\)
\(380\) 0 0
\(381\) −2.76331 + 1.33074i −0.141569 + 0.0681758i
\(382\) 0 0
\(383\) 8.53738 17.7281i 0.436240 0.905861i −0.560725 0.828002i \(-0.689477\pi\)
0.996964 0.0778589i \(-0.0248084\pi\)
\(384\) 0 0
\(385\) 12.4252 6.74263i 0.633248 0.343636i
\(386\) 0 0
\(387\) −19.5464 4.46133i −0.993598 0.226782i
\(388\) 0 0
\(389\) −1.38407 + 6.06402i −0.0701752 + 0.307458i −0.997819 0.0660083i \(-0.978974\pi\)
0.927644 + 0.373466i \(0.121831\pi\)
\(390\) 0 0
\(391\) 39.6773 2.00657
\(392\) 0 0
\(393\) 2.12114i 0.106997i
\(394\) 0 0
\(395\) −4.78924 0.433651i −0.240973 0.0218193i
\(396\) 0 0
\(397\) 3.76363 + 0.859023i 0.188891 + 0.0431131i 0.315920 0.948786i \(-0.397687\pi\)
−0.127029 + 0.991899i \(0.540544\pi\)
\(398\) 0 0
\(399\) 4.79933 + 0.412362i 0.240267 + 0.0206439i
\(400\) 0 0
\(401\) 35.3912 + 17.0435i 1.76735 + 0.851112i 0.968276 + 0.249883i \(0.0803923\pi\)
0.799077 + 0.601229i \(0.205322\pi\)
\(402\) 0 0
\(403\) 18.7533 + 38.9415i 0.934166 + 1.93982i
\(404\) 0 0
\(405\) −9.80397 14.8699i −0.487163 0.738890i
\(406\) 0 0
\(407\) 6.36328 13.2135i 0.315416 0.654968i
\(408\) 0 0
\(409\) 3.43815 + 4.31131i 0.170006 + 0.213180i 0.859534 0.511078i \(-0.170754\pi\)
−0.689529 + 0.724258i \(0.742182\pi\)
\(410\) 0 0
\(411\) 2.88622 0.142367
\(412\) 0 0
\(413\) 9.02769 + 23.7612i 0.444224 + 1.16921i
\(414\) 0 0
\(415\) −20.3345 + 33.9924i −0.998180 + 1.66862i
\(416\) 0 0
\(417\) −3.02643 + 6.28444i −0.148205 + 0.307750i
\(418\) 0 0
\(419\) 5.75577 7.21751i 0.281188 0.352598i −0.621101 0.783731i \(-0.713314\pi\)
0.902289 + 0.431132i \(0.141886\pi\)
\(420\) 0 0
\(421\) 18.5080 + 23.2083i 0.902024 + 1.13110i 0.990838 + 0.135054i \(0.0431209\pi\)
−0.0888140 + 0.996048i \(0.528308\pi\)
\(422\) 0 0
\(423\) 5.24079i 0.254816i
\(424\) 0 0
\(425\) 26.7982 14.3834i 1.29991 0.697697i
\(426\) 0 0
\(427\) 26.4891 + 25.1216i 1.28190 + 1.21572i
\(428\) 0 0
\(429\) 3.07193 + 3.85208i 0.148314 + 0.185980i
\(430\) 0 0
\(431\) 2.83499 + 12.4209i 0.136556 + 0.598293i 0.996177 + 0.0873596i \(0.0278429\pi\)
−0.859620 + 0.510933i \(0.829300\pi\)
\(432\) 0 0
\(433\) 17.0802 + 3.89845i 0.820824 + 0.187348i 0.612255 0.790660i \(-0.290262\pi\)
0.208569 + 0.978008i \(0.433120\pi\)
\(434\) 0 0
\(435\) 0.530082 + 1.41472i 0.0254155 + 0.0678308i
\(436\) 0 0
\(437\) −27.2060 21.6960i −1.30144 1.03786i
\(438\) 0 0
\(439\) −5.91260 + 2.84736i −0.282193 + 0.135897i −0.569627 0.821904i \(-0.692912\pi\)
0.287434 + 0.957801i \(0.407198\pi\)
\(440\) 0 0
\(441\) −19.8889 3.44315i −0.947088 0.163959i
\(442\) 0 0
\(443\) −0.625654 1.29918i −0.0297257 0.0617261i 0.885577 0.464492i \(-0.153763\pi\)
−0.915303 + 0.402766i \(0.868049\pi\)
\(444\) 0 0
\(445\) 33.1845 + 19.8512i 1.57310 + 0.941036i
\(446\) 0 0
\(447\) 4.93441 1.12625i 0.233390 0.0532697i
\(448\) 0 0
\(449\) −3.97284 + 17.4062i −0.187490 + 0.821448i 0.790444 + 0.612534i \(0.209850\pi\)
−0.977934 + 0.208913i \(0.933007\pi\)
\(450\) 0 0
\(451\) 2.14980 + 9.41890i 0.101230 + 0.443519i
\(452\) 0 0
\(453\) 3.32718 2.65333i 0.156324 0.124664i
\(454\) 0 0
\(455\) −17.0476 31.4151i −0.799205 1.47276i
\(456\) 0 0
\(457\) 34.3722 7.84523i 1.60786 0.366984i 0.678050 0.735016i \(-0.262825\pi\)
0.929813 + 0.368032i \(0.119968\pi\)
\(458\) 0 0
\(459\) 12.2140 0.570100
\(460\) 0 0
\(461\) 0.0303831 + 0.0380992i 0.00141508 + 0.00177445i 0.782539 0.622602i \(-0.213924\pi\)
−0.781123 + 0.624377i \(0.785353\pi\)
\(462\) 0 0
\(463\) 18.2160 + 14.5268i 0.846569 + 0.675116i 0.947493 0.319778i \(-0.103608\pi\)
−0.100923 + 0.994894i \(0.532180\pi\)
\(464\) 0 0
\(465\) 5.19133 + 1.68987i 0.240742 + 0.0783659i
\(466\) 0 0
\(467\) 24.3802 + 19.4425i 1.12818 + 0.899693i 0.995804 0.0915069i \(-0.0291683\pi\)
0.132375 + 0.991200i \(0.457740\pi\)
\(468\) 0 0
\(469\) 3.22215 + 23.0837i 0.148785 + 1.06591i
\(470\) 0 0
\(471\) −0.149003 −0.00686570
\(472\) 0 0
\(473\) −12.9897 + 10.3590i −0.597268 + 0.476306i
\(474\) 0 0
\(475\) −26.2401 4.79119i −1.20398 0.219835i
\(476\) 0 0
\(477\) −5.31160 11.0297i −0.243202 0.505013i
\(478\) 0 0
\(479\) 33.9787 16.3633i 1.55252 0.747656i 0.556018 0.831170i \(-0.312329\pi\)
0.996507 + 0.0835140i \(0.0266143\pi\)
\(480\) 0 0
\(481\) −33.4081 16.0885i −1.52328 0.733572i
\(482\) 0 0
\(483\) −4.27353 4.05291i −0.194452 0.184414i
\(484\) 0 0
\(485\) 1.87860 20.7473i 0.0853030 0.942087i
\(486\) 0 0
\(487\) −16.9456 3.86772i −0.767877 0.175263i −0.179399 0.983776i \(-0.557415\pi\)
−0.588478 + 0.808513i \(0.700273\pi\)
\(488\) 0 0
\(489\) −1.75168 −0.0792135
\(490\) 0 0
\(491\) −20.6589 −0.932325 −0.466162 0.884699i \(-0.654364\pi\)
−0.466162 + 0.884699i \(0.654364\pi\)
\(492\) 0 0
\(493\) 11.7403 + 2.67966i 0.528759 + 0.120686i
\(494\) 0 0
\(495\) −15.3445 1.38940i −0.689685 0.0624487i
\(496\) 0 0
\(497\) −8.64892 + 14.6099i −0.387957 + 0.655344i
\(498\) 0 0
\(499\) −34.4876 16.6084i −1.54388 0.743493i −0.548199 0.836348i \(-0.684686\pi\)
−0.995680 + 0.0928551i \(0.970401\pi\)
\(500\) 0 0
\(501\) 0.175318 0.0844288i 0.00783264 0.00377200i
\(502\) 0 0
\(503\) −2.60388 5.40700i −0.116101 0.241086i 0.834818 0.550526i \(-0.185573\pi\)
−0.950919 + 0.309440i \(0.899859\pi\)
\(504\) 0 0
\(505\) −9.20910 + 28.2906i −0.409800 + 1.25892i
\(506\) 0 0
\(507\) 6.27062 5.00065i 0.278488 0.222087i
\(508\) 0 0
\(509\) 28.2839 1.25366 0.626831 0.779155i \(-0.284352\pi\)
0.626831 + 0.779155i \(0.284352\pi\)
\(510\) 0 0
\(511\) −1.84108 + 5.74534i −0.0814448 + 0.254159i
\(512\) 0 0
\(513\) −8.37490 6.67876i −0.369761 0.294874i
\(514\) 0 0
\(515\) −31.5173 10.2594i −1.38882 0.452084i
\(516\) 0 0
\(517\) 3.39549 + 2.70781i 0.149334 + 0.119090i
\(518\) 0 0
\(519\) 1.17340 + 1.47140i 0.0515065 + 0.0645871i
\(520\) 0 0
\(521\) −9.14950 −0.400847 −0.200423 0.979709i \(-0.564232\pi\)
−0.200423 + 0.979709i \(0.564232\pi\)
\(522\) 0 0
\(523\) −10.2822 + 2.34685i −0.449610 + 0.102620i −0.441329 0.897345i \(-0.645493\pi\)
−0.00828042 + 0.999966i \(0.502636\pi\)
\(524\) 0 0
\(525\) −4.35558 1.18816i −0.190093 0.0518556i
\(526\) 0 0
\(527\) 34.0229 27.1324i 1.48206 1.18191i
\(528\) 0 0
\(529\) 4.34964 + 19.0570i 0.189115 + 0.828566i
\(530\) 0 0
\(531\) 6.16445 27.0082i 0.267514 1.17206i
\(532\) 0 0
\(533\) 23.8141 5.43542i 1.03150 0.235434i
\(534\) 0 0
\(535\) −5.37852 + 8.99108i −0.232534 + 0.388718i
\(536\) 0 0
\(537\) −2.19991 4.56816i −0.0949331 0.197131i
\(538\) 0 0
\(539\) −12.5070 + 11.1069i −0.538715 + 0.478409i
\(540\) 0 0
\(541\) −25.5246 + 12.2920i −1.09739 + 0.528474i −0.892836 0.450382i \(-0.851288\pi\)
−0.204552 + 0.978856i \(0.565574\pi\)
\(542\) 0 0
\(543\) 1.03145 + 0.822555i 0.0442638 + 0.0352992i
\(544\) 0 0
\(545\) 17.9459 6.72415i 0.768719 0.288031i
\(546\) 0 0
\(547\) 33.0539 + 7.54433i 1.41328 + 0.322572i 0.859945 0.510386i \(-0.170498\pi\)
0.553336 + 0.832958i \(0.313355\pi\)
\(548\) 0 0
\(549\) −8.85366 38.7904i −0.377865 1.65554i
\(550\) 0 0
\(551\) −6.58486 8.25716i −0.280525 0.351767i
\(552\) 0 0
\(553\) 5.63526 0.786600i 0.239636 0.0334496i
\(554\) 0 0
\(555\) −4.38592 + 1.64336i −0.186172 + 0.0697567i
\(556\) 0 0
\(557\) 19.7210i 0.835606i 0.908538 + 0.417803i \(0.137200\pi\)
−0.908538 + 0.417803i \(0.862800\pi\)
\(558\) 0 0
\(559\) 26.1909 + 32.8424i 1.10776 + 1.38909i
\(560\) 0 0
\(561\) 3.09290 3.87838i 0.130583 0.163745i
\(562\) 0 0
\(563\) −8.03066 + 16.6758i −0.338452 + 0.702802i −0.998842 0.0481206i \(-0.984677\pi\)
0.660390 + 0.750923i \(0.270391\pi\)
\(564\) 0 0
\(565\) 10.7105 17.9043i 0.450592 0.753239i
\(566\) 0 0
\(567\) 15.2912 + 14.5018i 0.642170 + 0.609019i
\(568\) 0 0
\(569\) −14.1897 −0.594864 −0.297432 0.954743i \(-0.596130\pi\)
−0.297432 + 0.954743i \(0.596130\pi\)
\(570\) 0 0
\(571\) −10.8365 13.5885i −0.453493 0.568662i 0.501551 0.865128i \(-0.332763\pi\)
−0.955043 + 0.296466i \(0.904192\pi\)
\(572\) 0 0
\(573\) −0.772940 + 1.60503i −0.0322900 + 0.0670510i
\(574\) 0 0
\(575\) 21.4315 + 24.5839i 0.893755 + 1.02522i
\(576\) 0 0
\(577\) −12.9319 26.8534i −0.538362 1.11792i −0.975798 0.218672i \(-0.929828\pi\)
0.437436 0.899250i \(-0.355887\pi\)
\(578\) 0 0
\(579\) 6.26982 + 3.01939i 0.260565 + 0.125481i
\(580\) 0 0
\(581\) 14.3022 44.6319i 0.593357 1.85165i
\(582\) 0 0
\(583\) −9.89049 2.25744i −0.409622 0.0934936i
\(584\) 0 0
\(585\) −3.51286 + 38.7961i −0.145239 + 1.60402i
\(586\) 0 0
\(587\) 31.9910i 1.32041i 0.751085 + 0.660206i \(0.229531\pi\)
−0.751085 + 0.660206i \(0.770469\pi\)
\(588\) 0 0
\(589\) −38.1652 −1.57257
\(590\) 0 0
\(591\) 0.0736944 0.322876i 0.00303138 0.0132814i
\(592\) 0 0
\(593\) −3.08913 0.705074i −0.126855 0.0289539i 0.158622 0.987339i \(-0.449295\pi\)
−0.285477 + 0.958385i \(0.592152\pi\)
\(594\) 0 0
\(595\) −27.0173 + 23.7719i −1.10760 + 0.974555i
\(596\) 0 0
\(597\) −2.42053 + 5.02628i −0.0990656 + 0.205712i
\(598\) 0 0
\(599\) 31.4348 15.1382i 1.28439 0.618530i 0.337876 0.941191i \(-0.390291\pi\)
0.946515 + 0.322660i \(0.104577\pi\)
\(600\) 0 0
\(601\) −10.8354 + 5.21808i −0.441987 + 0.212850i −0.641623 0.767020i \(-0.721738\pi\)
0.199636 + 0.979870i \(0.436024\pi\)
\(602\) 0 0
\(603\) 11.0216 22.8866i 0.448834 0.932013i
\(604\) 0 0
\(605\) 8.17910 8.54541i 0.332528 0.347420i
\(606\) 0 0
\(607\) 4.64403i 0.188495i −0.995549 0.0942477i \(-0.969955\pi\)
0.995549 0.0942477i \(-0.0300446\pi\)
\(608\) 0 0
\(609\) −0.990800 1.48786i −0.0401492 0.0602910i
\(610\) 0 0
\(611\) 6.84626 8.58494i 0.276970 0.347310i
\(612\) 0 0
\(613\) 17.2688 35.8590i 0.697480 1.44833i −0.187290 0.982305i \(-0.559971\pi\)
0.884770 0.466027i \(-0.154315\pi\)
\(614\) 0 0
\(615\) 1.58392 2.64778i 0.0638698 0.106769i
\(616\) 0 0
\(617\) 32.9123 26.2467i 1.32500 1.05665i 0.331425 0.943482i \(-0.392471\pi\)
0.993576 0.113171i \(-0.0361007\pi\)
\(618\) 0 0
\(619\) 23.8857 0.960049 0.480024 0.877255i \(-0.340628\pi\)
0.480024 + 0.877255i \(0.340628\pi\)
\(620\) 0 0
\(621\) 2.91445 + 12.7690i 0.116953 + 0.512404i
\(622\) 0 0
\(623\) −43.5712 13.9623i −1.74564 0.559388i
\(624\) 0 0
\(625\) 23.3868 + 8.83498i 0.935473 + 0.353399i
\(626\) 0 0
\(627\) −4.24149 + 0.968092i −0.169389 + 0.0386619i
\(628\) 0 0
\(629\) −8.30746 + 36.3974i −0.331240 + 1.45126i
\(630\) 0 0
\(631\) 6.06139 + 26.5567i 0.241300 + 1.05721i 0.939835 + 0.341629i \(0.110979\pi\)
−0.698534 + 0.715576i \(0.746164\pi\)
\(632\) 0 0
\(633\) −2.45253 1.95583i −0.0974794 0.0777372i
\(634\) 0 0
\(635\) −16.7769 + 11.0613i −0.665771 + 0.438955i
\(636\) 0 0
\(637\) 28.0820 + 31.6219i 1.11265 + 1.25290i
\(638\) 0 0
\(639\) 16.6714 8.02852i 0.659510 0.317603i
\(640\) 0 0
\(641\) −17.9032 + 22.4499i −0.707134 + 0.886718i −0.997534 0.0701876i \(-0.977640\pi\)
0.290400 + 0.956905i \(0.406212\pi\)
\(642\) 0 0
\(643\) −7.95756 + 1.81626i −0.313815 + 0.0716263i −0.376528 0.926405i \(-0.622882\pi\)
0.0627124 + 0.998032i \(0.480025\pi\)
\(644\) 0 0
\(645\) 5.28438 + 0.478484i 0.208072 + 0.0188403i
\(646\) 0 0
\(647\) 18.8792 4.30904i 0.742216 0.169406i 0.165339 0.986237i \(-0.447128\pi\)
0.576877 + 0.816831i \(0.304271\pi\)
\(648\) 0 0
\(649\) −14.3135 17.9486i −0.561854 0.704543i
\(650\) 0 0
\(651\) −6.43600 0.552985i −0.252247 0.0216732i
\(652\) 0 0
\(653\) −14.6558 + 3.34510i −0.573528 + 0.130904i −0.499441 0.866348i \(-0.666461\pi\)
−0.0740865 + 0.997252i \(0.523604\pi\)
\(654\) 0 0
\(655\) 1.85808 + 13.7729i 0.0726012 + 0.538151i
\(656\) 0 0
\(657\) 5.14079 4.09964i 0.200561 0.159942i
\(658\) 0 0
\(659\) 3.32038 4.16363i 0.129344 0.162192i −0.712942 0.701223i \(-0.752638\pi\)
0.842286 + 0.539031i \(0.181209\pi\)
\(660\) 0 0
\(661\) −44.6623 21.5082i −1.73716 0.836573i −0.983869 0.178888i \(-0.942750\pi\)
−0.753293 0.657685i \(-0.771536\pi\)
\(662\) 0 0
\(663\) −9.80584 7.81990i −0.380827 0.303700i
\(664\) 0 0
\(665\) 31.5240 1.52660i 1.22245 0.0591990i
\(666\) 0 0
\(667\) 12.9133i 0.500004i
\(668\) 0 0
\(669\) −0.474117 0.594524i −0.0183304 0.0229856i
\(670\) 0 0
\(671\) −29.7067 14.3060i −1.14682 0.552277i
\(672\) 0 0
\(673\) −8.93194 18.5474i −0.344301 0.714948i 0.654867 0.755744i \(-0.272725\pi\)
−0.999167 + 0.0407964i \(0.987011\pi\)
\(674\) 0 0
\(675\) 6.59732 + 7.56774i 0.253931 + 0.291283i
\(676\) 0 0
\(677\) −7.69414 + 15.9770i −0.295710 + 0.614048i −0.994898 0.100890i \(-0.967831\pi\)
0.699188 + 0.714938i \(0.253545\pi\)
\(678\) 0 0
\(679\) 3.40760 + 24.4123i 0.130772 + 0.936858i
\(680\) 0 0
\(681\) 0.391578 1.71562i 0.0150053 0.0657426i
\(682\) 0 0
\(683\) −21.3258 4.86748i −0.816010 0.186249i −0.205908 0.978571i \(-0.566015\pi\)
−0.610103 + 0.792322i \(0.708872\pi\)
\(684\) 0 0
\(685\) 18.7407 2.52827i 0.716044 0.0966004i
\(686\) 0 0
\(687\) 7.20614i 0.274932i
\(688\) 0 0
\(689\) −5.70757 + 25.0065i −0.217441 + 0.952671i
\(690\) 0 0
\(691\) 2.89949 12.7035i 0.110302 0.483263i −0.889359 0.457210i \(-0.848849\pi\)
0.999661 0.0260535i \(-0.00829403\pi\)
\(692\) 0 0
\(693\) 18.0551 2.52023i 0.685857 0.0957356i
\(694\) 0 0
\(695\) −14.1460 + 43.4569i −0.536588 + 1.64842i
\(696\) 0 0
\(697\) −10.6707 22.1578i −0.404180 0.839288i
\(698\) 0 0
\(699\) −3.77085 + 1.81595i −0.142627 + 0.0686854i
\(700\) 0 0
\(701\) −7.83780 3.77449i −0.296030 0.142560i 0.279974 0.960008i \(-0.409674\pi\)
−0.576003 + 0.817447i \(0.695389\pi\)
\(702\) 0 0
\(703\) 25.5988 20.4144i 0.965477 0.769942i
\(704\) 0 0
\(705\) −0.185435 1.37453i −0.00698390 0.0517677i
\(706\) 0 0
\(707\) 3.01354 35.0736i 0.113336 1.31908i
\(708\) 0 0
\(709\) −4.96449 + 6.22528i −0.186445 + 0.233795i −0.866266 0.499584i \(-0.833486\pi\)
0.679820 + 0.733379i \(0.262058\pi\)
\(710\) 0 0
\(711\) −5.58713 2.69062i −0.209534 0.100906i
\(712\) 0 0
\(713\) 36.4838 + 29.0948i 1.36633 + 1.08961i
\(714\) 0 0
\(715\) 23.3209 + 22.3212i 0.872151 + 0.834764i
\(716\) 0 0
\(717\) 1.57467i 0.0588073i
\(718\) 0 0
\(719\) 5.69182 + 24.9375i 0.212269 + 0.930011i 0.963021 + 0.269427i \(0.0868342\pi\)
−0.750752 + 0.660584i \(0.770309\pi\)
\(720\) 0 0
\(721\) 39.0738 + 3.35725i 1.45518 + 0.125030i
\(722\) 0 0
\(723\) −3.20439 + 2.55542i −0.119173 + 0.0950370i
\(724\) 0 0
\(725\) 4.68118 + 8.72168i 0.173855 + 0.323915i
\(726\) 0 0
\(727\) 3.09226 + 0.705789i 0.114686 + 0.0261763i 0.279479 0.960152i \(-0.409838\pi\)
−0.164793 + 0.986328i \(0.552696\pi\)
\(728\) 0 0
\(729\) −4.65344 20.3881i −0.172350 0.755113i
\(730\) 0 0
\(731\) 26.3698 33.0666i 0.975321 1.22301i
\(732\) 0 0
\(733\) −8.74410 18.1573i −0.322971 0.670655i 0.674756 0.738040i \(-0.264249\pi\)
−0.997727 + 0.0673851i \(0.978534\pi\)
\(734\) 0 0
\(735\) 5.33818 + 0.199321i 0.196902 + 0.00735207i
\(736\) 0 0
\(737\) −9.13351 18.9659i −0.336437 0.698619i
\(738\) 0 0
\(739\) 20.7358 26.0018i 0.762778 0.956493i −0.237110 0.971483i \(-0.576200\pi\)
0.999888 + 0.0149897i \(0.00477154\pi\)
\(740\) 0 0
\(741\) 2.44766 + 10.7239i 0.0899171 + 0.393953i
\(742\) 0 0
\(743\) −38.8528 8.86790i −1.42537 0.325332i −0.560846 0.827920i \(-0.689524\pi\)
−0.864526 + 0.502589i \(0.832381\pi\)
\(744\) 0 0
\(745\) 31.0533 11.6354i 1.13771 0.426287i
\(746\) 0 0
\(747\) −39.9356 + 31.8476i −1.46117 + 1.16524i
\(748\) 0 0
\(749\) 3.78298 11.8053i 0.138227 0.431355i
\(750\) 0 0
\(751\) −2.77500 12.1581i −0.101261 0.443655i −0.999987 0.00514314i \(-0.998363\pi\)
0.898725 0.438512i \(-0.144494\pi\)
\(752\) 0 0
\(753\) 0.469629i 0.0171142i
\(754\) 0 0
\(755\) 19.2796 20.1431i 0.701656 0.733081i
\(756\) 0 0
\(757\) −14.3746 11.4634i −0.522454 0.416643i 0.326431 0.945221i \(-0.394154\pi\)
−0.848885 + 0.528578i \(0.822725\pi\)
\(758\) 0 0
\(759\) 4.79264 + 2.30801i 0.173962 + 0.0837756i
\(760\) 0 0
\(761\) 21.0902 26.4463i 0.764519 0.958676i −0.235394 0.971900i \(-0.575638\pi\)
0.999913 + 0.0132238i \(0.00420940\pi\)
\(762\) 0 0
\(763\) −18.8736 + 12.5684i −0.683271 + 0.455006i
\(764\) 0 0
\(765\) 38.8687 5.24372i 1.40530 0.189587i
\(766\) 0 0
\(767\) −45.3800 + 36.1893i −1.63858 + 1.30672i
\(768\) 0 0
\(769\) −7.88695 3.79815i −0.284411 0.136965i 0.286240 0.958158i \(-0.407595\pi\)
−0.570650 + 0.821193i \(0.693309\pi\)
\(770\) 0 0
\(771\) 8.83656 4.25546i 0.318241 0.153257i
\(772\) 0 0
\(773\) 3.29667 + 6.84560i 0.118573 + 0.246219i 0.951805 0.306705i \(-0.0992264\pi\)
−0.833232 + 0.552924i \(0.813512\pi\)
\(774\) 0 0
\(775\) 35.1884 + 6.42508i 1.26401 + 0.230796i
\(776\) 0 0
\(777\) 4.61265 3.07167i 0.165478 0.110196i
\(778\) 0 0
\(779\) −4.79952 + 21.0281i −0.171961 + 0.753408i
\(780\) 0 0
\(781\) 3.41213 14.9495i 0.122096 0.534936i
\(782\) 0 0
\(783\) 3.97513i 0.142060i
\(784\) 0 0
\(785\) −0.967501 + 0.130524i −0.0345316 + 0.00465861i
\(786\) 0 0
\(787\) −46.1123 10.5248i −1.64372 0.375169i −0.702164 0.712015i \(-0.747783\pi\)
−0.941560 + 0.336845i \(0.890640\pi\)
\(788\) 0 0
\(789\) −0.457703 + 2.00533i −0.0162946 + 0.0713915i
\(790\) 0 0
\(791\) −7.53319 + 23.5083i −0.267849 + 0.835858i
\(792\) 0 0
\(793\) −36.1704 + 75.1086i −1.28445 + 2.66718i
\(794\) 0 0
\(795\) 1.78336 + 2.70486i 0.0632494 + 0.0959316i
\(796\) 0 0
\(797\) −1.16816 2.42571i −0.0413784 0.0859232i 0.879255 0.476352i \(-0.158041\pi\)
−0.920633 + 0.390429i \(0.872327\pi\)
\(798\) 0 0
\(799\) −9.96069 4.79682i −0.352384 0.169699i
\(800\) 0 0
\(801\) 31.0907 + 38.9864i 1.09853 + 1.37752i
\(802\) 0 0
\(803\) 5.44891i 0.192288i
\(804\) 0 0
\(805\) −31.2990 22.5727i −1.10314 0.795581i
\(806\) 0 0
\(807\) 0.903153 + 0.720240i 0.0317925 + 0.0253537i
\(808\) 0 0
\(809\) −4.00344 1.92796i −0.140753 0.0677833i 0.362181 0.932108i \(-0.382032\pi\)
−0.502935 + 0.864324i \(0.667746\pi\)
\(810\) 0 0
\(811\) 3.19940 4.01192i 0.112346 0.140877i −0.722479 0.691393i \(-0.756997\pi\)
0.834825 + 0.550515i \(0.185569\pi\)
\(812\) 0 0
\(813\) 5.19391 4.14200i 0.182158 0.145266i
\(814\) 0 0
\(815\) −11.3739 + 1.53444i −0.398410 + 0.0537490i
\(816\) 0 0
\(817\) −36.1625 + 8.25385i −1.26517 + 0.288766i
\(818\) 0 0
\(819\) −6.37198 45.6494i −0.222655 1.59512i
\(820\) 0 0
\(821\) 5.54381 + 6.95172i 0.193480 + 0.242617i 0.869103 0.494631i \(-0.164697\pi\)
−0.675623 + 0.737247i \(0.736125\pi\)
\(822\) 0 0
\(823\) 53.5010 12.2113i 1.86493 0.425658i 0.867508 0.497424i \(-0.165721\pi\)
0.997422 + 0.0717659i \(0.0228635\pi\)
\(824\) 0 0
\(825\) 4.07364 0.178533i 0.141826 0.00621573i
\(826\) 0 0
\(827\) −24.7335 + 5.64525i −0.860067 + 0.196305i −0.629738 0.776808i \(-0.716838\pi\)
−0.230330 + 0.973113i \(0.573980\pi\)
\(828\) 0 0
\(829\) −21.6069 + 27.0942i −0.750438 + 0.941020i −0.999624 0.0274359i \(-0.991266\pi\)
0.249185 + 0.968456i \(0.419837\pi\)
\(830\) 0 0
\(831\) −1.25805 + 0.605845i −0.0436413 + 0.0210165i
\(832\) 0 0
\(833\) 24.7481 34.6495i 0.857469 1.20053i
\(834\) 0 0
\(835\) 1.06441 0.701785i 0.0368354 0.0242863i
\(836\) 0 0
\(837\) 11.2309 + 8.95635i 0.388197 + 0.309577i
\(838\) 0 0
\(839\) −4.11804 18.0423i −0.142171 0.622890i −0.994929 0.100584i \(-0.967929\pi\)
0.852758 0.522306i \(-0.174928\pi\)
\(840\) 0 0
\(841\) 5.58099 24.4519i 0.192448 0.843170i
\(842\) 0 0
\(843\) 5.20281 1.18751i 0.179194 0.0409000i
\(844\) 0 0
\(845\) 36.3356 37.9630i 1.24998 1.30597i
\(846\) 0 0
\(847\) −7.12987 + 12.0439i −0.244985 + 0.413833i
\(848\) 0 0
\(849\) −1.18523 5.19284i −0.0406770 0.178218i
\(850\) 0 0
\(851\) −40.0337 −1.37234
\(852\) 0 0
\(853\) −30.8883 + 24.6326i −1.05760 + 0.843405i −0.988044 0.154173i \(-0.950729\pi\)
−0.0695529 + 0.997578i \(0.522157\pi\)
\(854\) 0 0
\(855\) −29.5188 17.6583i −1.00952 0.603903i
\(856\) 0 0
\(857\) 7.80132 16.1996i 0.266488 0.553368i −0.724189 0.689602i \(-0.757785\pi\)
0.990677 + 0.136234i \(0.0434998\pi\)
\(858\) 0 0
\(859\) 29.9894 37.6055i 1.02322 1.28308i 0.0647497 0.997902i \(-0.479375\pi\)
0.958474 0.285180i \(-0.0920535\pi\)
\(860\) 0 0
\(861\) −1.11405 + 3.47653i −0.0379667 + 0.118480i
\(862\) 0 0
\(863\) 15.7778i 0.537082i −0.963268 0.268541i \(-0.913459\pi\)
0.963268 0.268541i \(-0.0865415\pi\)
\(864\) 0 0
\(865\) 8.90798 + 8.52612i 0.302880 + 0.289897i
\(866\) 0 0
\(867\) −2.96169 + 6.15001i −0.100584 + 0.208865i
\(868\) 0 0
\(869\) −4.63001 + 2.22970i −0.157062 + 0.0756372i
\(870\) 0 0
\(871\) −47.9522 + 23.0926i −1.62480 + 0.782462i
\(872\) 0 0
\(873\) 11.6559 24.2038i 0.394494 0.819175i
\(874\) 0 0
\(875\) −29.3222 3.89951i −0.991273 0.131827i
\(876\) 0 0
\(877\) −36.1563 8.25243i −1.22091 0.278665i −0.436956 0.899483i \(-0.643943\pi\)
−0.783955 + 0.620818i \(0.786800\pi\)
\(878\) 0 0
\(879\) −1.99585 + 8.74439i −0.0673183 + 0.294941i
\(880\) 0 0
\(881\) −49.4464 −1.66589 −0.832946 0.553354i \(-0.813348\pi\)
−0.832946 + 0.553354i \(0.813348\pi\)
\(882\) 0 0
\(883\) 20.5962i 0.693118i 0.938028 + 0.346559i \(0.112650\pi\)
−0.938028 + 0.346559i \(0.887350\pi\)
\(884\) 0 0
\(885\) −0.661146 + 7.30170i −0.0222242 + 0.245444i
\(886\) 0 0
\(887\) −30.9964 7.07471i −1.04076 0.237546i −0.332206 0.943207i \(-0.607793\pi\)
−0.708549 + 0.705661i \(0.750650\pi\)
\(888\) 0 0
\(889\) 16.3616 17.2523i 0.548751 0.578622i
\(890\) 0 0
\(891\) −17.1486 8.25835i −0.574501 0.276665i
\(892\) 0 0
\(893\) 4.20690 + 8.73571i 0.140778 + 0.292329i
\(894\) 0 0
\(895\) −18.2860 27.7347i −0.611233 0.927068i
\(896\) 0 0
\(897\) 5.83543 12.1174i 0.194839 0.404588i
\(898\) 0 0
\(899\) 8.83043 + 11.0730i 0.294511 + 0.369306i
\(900\) 0 0
\(901\) 25.8247 0.860346
\(902\) 0 0
\(903\) −6.21786 + 0.867923i −0.206918 + 0.0288827i
\(904\) 0 0
\(905\) 7.41791 + 4.43744i 0.246580 + 0.147506i
\(906\) 0 0
\(907\) 15.9020 33.0208i 0.528016 1.09644i −0.450975 0.892536i \(-0.648924\pi\)
0.978992 0.203901i \(-0.0653620\pi\)
\(908\) 0 0
\(909\) −23.9211 + 29.9961i −0.793413 + 0.994909i
\(910\) 0 0
\(911\) −36.2668 45.4772i −1.20157 1.50673i −0.809844 0.586645i \(-0.800448\pi\)
−0.391729 0.920081i \(-0.628123\pi\)
\(912\) 0 0
\(913\) 42.3292i 1.40089i
\(914\) 0 0
\(915\) 3.69462 + 9.86049i 0.122140 + 0.325978i
\(916\) 0 0
\(917\) −5.84028 15.3719i −0.192863 0.507623i
\(918\) 0 0
\(919\) 4.93389 + 6.18691i 0.162754 + 0.204087i 0.856521 0.516113i \(-0.172621\pi\)
−0.693766 + 0.720200i \(0.744050\pi\)
\(920\) 0 0
\(921\) −1.20732 5.28961i −0.0397825 0.174299i
\(922\) 0 0
\(923\) −37.7974 8.62702i −1.24412 0.283962i
\(924\) 0 0
\(925\) −27.0389 + 14.5126i −0.889034 + 0.477170i
\(926\) 0 0
\(927\) −33.4172 26.6494i −1.09757 0.875280i
\(928\) 0 0
\(929\) −42.1150 + 20.2815i −1.38175 + 0.665415i −0.969372 0.245598i \(-0.921016\pi\)
−0.412377 + 0.911013i \(0.635301\pi\)
\(930\) 0 0
\(931\) −35.9160 + 10.2260i −1.17710 + 0.335142i
\(932\) 0 0
\(933\) −2.36911 4.91951i −0.0775613 0.161058i
\(934\) 0 0
\(935\) 16.6853 27.8922i 0.545668 0.912174i
\(936\) 0 0
\(937\) 24.9931 5.70452i 0.816490 0.186359i 0.206173 0.978516i \(-0.433899\pi\)
0.610317 + 0.792157i \(0.291042\pi\)
\(938\) 0 0
\(939\) 1.60518 7.03273i 0.0523829 0.229505i
\(940\) 0 0
\(941\) −9.24437 40.5022i −0.301358 1.32033i −0.868079 0.496425i \(-0.834646\pi\)
0.566722 0.823909i \(-0.308212\pi\)
\(942\) 0 0
\(943\) 20.6186 16.4428i 0.671433 0.535450i
\(944\) 0 0
\(945\) −9.63485 6.94861i −0.313422 0.226038i
\(946\) 0 0
\(947\) 5.05209 1.15311i 0.164171 0.0374709i −0.139645 0.990202i \(-0.544596\pi\)
0.303816 + 0.952731i \(0.401739\pi\)
\(948\) 0 0
\(949\) −13.7767 −0.447210
\(950\) 0 0
\(951\) −5.08385 6.37495i −0.164855 0.206722i
\(952\) 0 0
\(953\) −24.8137 19.7883i −0.803795 0.641005i 0.132908 0.991128i \(-0.457568\pi\)
−0.936704 + 0.350123i \(0.886140\pi\)
\(954\) 0 0
\(955\) −3.61285 + 11.0988i −0.116909 + 0.359148i
\(956\) 0 0
\(957\) 1.26225 + 1.00661i 0.0408026 + 0.0325390i
\(958\) 0 0
\(959\) −20.9164 + 7.94682i −0.675424 + 0.256616i
\(960\) 0 0
\(961\) 20.1803 0.650978
\(962\) 0 0
\(963\) −10.5631 + 8.42377i −0.340390 + 0.271452i
\(964\) 0 0
\(965\) 43.3558 + 14.1131i 1.39567 + 0.454316i
\(966\) 0 0
\(967\) 2.32850 + 4.83518i 0.0748796 + 0.155489i 0.935048 0.354521i \(-0.115356\pi\)
−0.860169 + 0.510010i \(0.829642\pi\)
\(968\) 0 0
\(969\) 9.97805 4.80518i 0.320541 0.154365i
\(970\) 0 0
\(971\) −2.84091 1.36811i −0.0911690 0.0439047i 0.387744 0.921767i \(-0.373255\pi\)
−0.478913 + 0.877863i \(0.658969\pi\)
\(972\) 0 0
\(973\) 4.62907 53.8761i 0.148401 1.72719i
\(974\) 0 0
\(975\) −0.451392 10.2995i −0.0144561 0.329849i
\(976\) 0 0
\(977\) −30.5014 6.96175i −0.975827 0.222726i −0.295264 0.955416i \(-0.595408\pi\)
−0.680563 + 0.732690i \(0.738265\pi\)
\(978\) 0 0
\(979\) 41.3232 1.32069
\(980\) 0 0
\(981\) 24.7134 0.789037
\(982\) 0 0
\(983\) −9.70594 2.21532i −0.309571 0.0706576i 0.0649129 0.997891i \(-0.479323\pi\)
−0.374484 + 0.927233i \(0.622180\pi\)
\(984\) 0 0
\(985\) 0.195675 2.16104i 0.00623474 0.0688565i
\(986\) 0 0
\(987\) 0.582857 + 1.53410i 0.0185525 + 0.0488310i
\(988\) 0 0
\(989\) 40.8615 + 19.6779i 1.29932 + 0.625720i
\(990\) 0 0
\(991\) 5.19911 2.50376i 0.165155 0.0795346i −0.349480 0.936944i \(-0.613642\pi\)
0.514635 + 0.857409i \(0.327927\pi\)
\(992\) 0 0
\(993\) 4.67162 + 9.70073i 0.148250 + 0.307843i
\(994\) 0 0
\(995\) −11.3139 + 34.7567i −0.358676 + 1.10186i
\(996\) 0 0
\(997\) 10.1831 8.12075i 0.322502 0.257187i −0.448834 0.893615i \(-0.648160\pi\)
0.771336 + 0.636429i \(0.219589\pi\)
\(998\) 0 0
\(999\) −12.3237 −0.389904
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.bd.a.169.14 yes 168
5.4 even 2 inner 980.2.bd.a.169.15 yes 168
49.29 even 7 inner 980.2.bd.a.29.15 yes 168
245.29 even 14 inner 980.2.bd.a.29.14 168
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.bd.a.29.14 168 245.29 even 14 inner
980.2.bd.a.29.15 yes 168 49.29 even 7 inner
980.2.bd.a.169.14 yes 168 1.1 even 1 trivial
980.2.bd.a.169.15 yes 168 5.4 even 2 inner