Properties

Label 980.2.k.f.883.1
Level $980$
Weight $2$
Character 980.883
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(687,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.687");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 883.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 980.883
Dual form 980.2.k.f.687.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(-2.12132 - 0.707107i) q^{5} +(-2.00000 - 2.00000i) q^{8} +3.00000i q^{9} +(-2.82843 + 1.41421i) q^{10} +(-4.24264 - 4.24264i) q^{13} -4.00000 q^{16} +(-5.65685 + 5.65685i) q^{17} +(3.00000 + 3.00000i) q^{18} +(-1.41421 + 4.24264i) q^{20} +(4.00000 + 3.00000i) q^{25} -8.48528 q^{26} -10.0000i q^{29} +(-4.00000 + 4.00000i) q^{32} +11.3137i q^{34} +6.00000 q^{36} +(-7.00000 + 7.00000i) q^{37} +(2.82843 + 5.65685i) q^{40} +1.41421 q^{41} +(2.12132 - 6.36396i) q^{45} +(7.00000 - 1.00000i) q^{50} +(-8.48528 + 8.48528i) q^{52} +(-5.00000 - 5.00000i) q^{53} +(-10.0000 - 10.0000i) q^{58} -1.41421 q^{61} +8.00000i q^{64} +(6.00000 + 12.0000i) q^{65} +(11.3137 + 11.3137i) q^{68} +(6.00000 - 6.00000i) q^{72} +(4.24264 + 4.24264i) q^{73} +14.0000i q^{74} +(8.48528 + 2.82843i) q^{80} -9.00000 q^{81} +(1.41421 - 1.41421i) q^{82} +(16.0000 - 8.00000i) q^{85} -18.3848i q^{89} +(-4.24264 - 8.48528i) q^{90} +(5.65685 - 5.65685i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 16 q^{16} + 12 q^{18} + 16 q^{25} - 16 q^{32} + 24 q^{36} - 28 q^{37} + 28 q^{50} - 20 q^{53} - 40 q^{58} + 24 q^{65} + 24 q^{72} - 36 q^{81} + 64 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −2.12132 0.707107i −0.948683 0.316228i
\(6\) 0 0
\(7\) 0 0
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 3.00000i 1.00000i
\(10\) −2.82843 + 1.41421i −0.894427 + 0.447214i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −4.24264 4.24264i −1.17670 1.17670i −0.980581 0.196116i \(-0.937167\pi\)
−0.196116 0.980581i \(-0.562833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −5.65685 + 5.65685i −1.37199 + 1.37199i −0.514496 + 0.857493i \(0.672021\pi\)
−0.857493 + 0.514496i \(0.827979\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −1.41421 + 4.24264i −0.316228 + 0.948683i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 4.00000 + 3.00000i 0.800000 + 0.600000i
\(26\) −8.48528 −1.66410
\(27\) 0 0
\(28\) 0 0
\(29\) 10.0000i 1.85695i −0.371391 0.928477i \(-0.621119\pi\)
0.371391 0.928477i \(-0.378881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −4.00000 + 4.00000i −0.707107 + 0.707107i
\(33\) 0 0
\(34\) 11.3137i 1.94029i
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) −7.00000 + 7.00000i −1.15079 + 1.15079i −0.164399 + 0.986394i \(0.552568\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 2.82843 + 5.65685i 0.447214 + 0.894427i
\(41\) 1.41421 0.220863 0.110432 0.993884i \(-0.464777\pi\)
0.110432 + 0.993884i \(0.464777\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 2.12132 6.36396i 0.316228 0.948683i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7.00000 1.00000i 0.989949 0.141421i
\(51\) 0 0
\(52\) −8.48528 + 8.48528i −1.17670 + 1.17670i
\(53\) −5.00000 5.00000i −0.686803 0.686803i 0.274721 0.961524i \(-0.411414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −10.0000 10.0000i −1.31306 1.31306i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −1.41421 −0.181071 −0.0905357 0.995893i \(-0.528858\pi\)
−0.0905357 + 0.995893i \(0.528858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 6.00000 + 12.0000i 0.744208 + 1.48842i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 11.3137 + 11.3137i 1.37199 + 1.37199i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 6.00000 6.00000i 0.707107 0.707107i
\(73\) 4.24264 + 4.24264i 0.496564 + 0.496564i 0.910366 0.413803i \(-0.135800\pi\)
−0.413803 + 0.910366i \(0.635800\pi\)
\(74\) 14.0000i 1.62747i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 8.48528 + 2.82843i 0.948683 + 0.316228i
\(81\) −9.00000 −1.00000
\(82\) 1.41421 1.41421i 0.156174 0.156174i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 16.0000 8.00000i 1.73544 0.867722i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.3848i 1.94878i −0.224860 0.974391i \(-0.572192\pi\)
0.224860 0.974391i \(-0.427808\pi\)
\(90\) −4.24264 8.48528i −0.447214 0.894427i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.65685 5.65685i 0.574367 0.574367i −0.358979 0.933346i \(-0.616875\pi\)
0.933346 + 0.358979i \(0.116875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 6.00000 8.00000i 0.600000 0.800000i
\(101\) −12.7279 −1.26648 −0.633238 0.773957i \(-0.718274\pi\)
−0.633238 + 0.773957i \(0.718274\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 16.9706i 1.66410i
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 20.0000i 1.91565i −0.287348 0.957826i \(-0.592774\pi\)
0.287348 0.957826i \(-0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.0000 15.0000i −1.41108 1.41108i −0.752577 0.658505i \(-0.771189\pi\)
−0.658505 0.752577i \(-0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −20.0000 −1.85695
\(117\) 12.7279 12.7279i 1.17670 1.17670i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) −1.41421 + 1.41421i −0.128037 + 0.128037i
\(123\) 0 0
\(124\) 0 0
\(125\) −6.36396 9.19239i −0.569210 0.822192i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) 18.0000 + 6.00000i 1.57870 + 0.526235i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 22.6274 1.94029
\(137\) −7.00000 + 7.00000i −0.598050 + 0.598050i −0.939793 0.341743i \(-0.888983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) −7.07107 + 21.2132i −0.587220 + 1.76166i
\(146\) 8.48528 0.702247
\(147\) 0 0
\(148\) 14.0000 + 14.0000i 1.15079 + 1.15079i
\(149\) 14.0000i 1.14692i 0.819232 + 0.573462i \(0.194400\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) −16.9706 16.9706i −1.37199 1.37199i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 15.5563 15.5563i 1.24153 1.24153i 0.282166 0.959366i \(-0.408947\pi\)
0.959366 0.282166i \(-0.0910530\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 11.3137 5.65685i 0.894427 0.447214i
\(161\) 0 0
\(162\) −9.00000 + 9.00000i −0.707107 + 0.707107i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 2.82843i 0.220863i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 23.0000i 1.76923i
\(170\) 8.00000 24.0000i 0.613572 1.84072i
\(171\) 0 0
\(172\) 0 0
\(173\) 2.82843 + 2.82843i 0.215041 + 0.215041i 0.806405 0.591364i \(-0.201410\pi\)
−0.591364 + 0.806405i \(0.701410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −18.3848 18.3848i −1.37800 1.37800i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −12.7279 4.24264i −0.948683 0.316228i
\(181\) 26.8701 1.99724 0.998618 0.0525588i \(-0.0167377\pi\)
0.998618 + 0.0525588i \(0.0167377\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 19.7990 9.89949i 1.45565 0.727825i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 5.00000 + 5.00000i 0.359908 + 0.359908i 0.863779 0.503871i \(-0.168091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 11.3137i 0.812277i
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0000 + 15.0000i −1.06871 + 1.06871i −0.0712470 + 0.997459i \(0.522698\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −2.00000 14.0000i −0.141421 0.989949i
\(201\) 0 0
\(202\) −12.7279 + 12.7279i −0.895533 + 0.895533i
\(203\) 0 0
\(204\) 0 0
\(205\) −3.00000 1.00000i −0.209529 0.0698430i
\(206\) 0 0
\(207\) 0 0
\(208\) 16.9706 + 16.9706i 1.17670 + 1.17670i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −10.0000 + 10.0000i −0.686803 + 0.686803i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −20.0000 20.0000i −1.35457 1.35457i
\(219\) 0 0
\(220\) 0 0
\(221\) 48.0000 3.22883
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) −9.00000 + 12.0000i −0.600000 + 0.800000i
\(226\) −30.0000 −1.99557
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 24.0416i 1.58872i −0.607450 0.794358i \(-0.707808\pi\)
0.607450 0.794358i \(-0.292192\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −20.0000 + 20.0000i −1.31306 + 1.31306i
\(233\) −21.0000 21.0000i −1.37576 1.37576i −0.851658 0.524097i \(-0.824403\pi\)
−0.524097 0.851658i \(-0.675597\pi\)
\(234\) 25.4558i 1.66410i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −15.5563 −1.00207 −0.501036 0.865426i \(-0.667048\pi\)
−0.501036 + 0.865426i \(0.667048\pi\)
\(242\) 11.0000 11.0000i 0.707107 0.707107i
\(243\) 0 0
\(244\) 2.82843i 0.181071i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −15.5563 2.82843i −0.983870 0.178885i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −22.6274 + 22.6274i −1.41146 + 1.41146i −0.661622 + 0.749838i \(0.730131\pi\)
−0.749838 + 0.661622i \(0.769869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 24.0000 12.0000i 1.48842 0.744208i
\(261\) 30.0000 1.85695
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 7.07107 + 14.1421i 0.434372 + 0.868744i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 32.5269i 1.98320i 0.129339 + 0.991600i \(0.458714\pi\)
−0.129339 + 0.991600i \(0.541286\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 22.6274 22.6274i 1.37199 1.37199i
\(273\) 0 0
\(274\) 14.0000i 0.845771i
\(275\) 0 0
\(276\) 0 0
\(277\) −5.00000 + 5.00000i −0.300421 + 0.300421i −0.841178 0.540758i \(-0.818138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −12.0000 12.0000i −0.707107 0.707107i
\(289\) 47.0000i 2.76471i
\(290\) 14.1421 + 28.2843i 0.830455 + 1.66091i
\(291\) 0 0
\(292\) 8.48528 8.48528i 0.496564 0.496564i
\(293\) −2.82843 2.82843i −0.165238 0.165238i 0.619644 0.784883i \(-0.287277\pi\)
−0.784883 + 0.619644i \(0.787277\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 28.0000 1.62747
\(297\) 0 0
\(298\) 14.0000 + 14.0000i 0.810998 + 0.810998i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 + 1.00000i 0.171780 + 0.0572598i
\(306\) −33.9411 −1.94029
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 18.3848 + 18.3848i 1.03917 + 1.03917i 0.999201 + 0.0399680i \(0.0127256\pi\)
0.0399680 + 0.999201i \(0.487274\pi\)
\(314\) 31.1127i 1.75579i
\(315\) 0 0
\(316\) 0 0
\(317\) −25.0000 + 25.0000i −1.40414 + 1.40414i −0.617822 + 0.786318i \(0.711985\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 5.65685 16.9706i 0.316228 0.948683i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) −4.24264 29.6985i −0.235339 1.64738i
\(326\) 0 0
\(327\) 0 0
\(328\) −2.82843 2.82843i −0.156174 0.156174i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −21.0000 21.0000i −1.15079 1.15079i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 + 7.00000i −0.381314 + 0.381314i −0.871576 0.490261i \(-0.836901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 23.0000 + 23.0000i 1.25104 + 1.25104i
\(339\) 0 0
\(340\) −16.0000 32.0000i −0.867722 1.73544i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 5.65685 0.304114
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 18.3848i 0.984115i 0.870563 + 0.492057i \(0.163755\pi\)
−0.870563 + 0.492057i \(0.836245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.3137 11.3137i −0.602168 0.602168i 0.338719 0.940887i \(-0.390006\pi\)
−0.940887 + 0.338719i \(0.890006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −36.7696 −1.94878
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −16.9706 + 8.48528i −0.894427 + 0.447214i
\(361\) −19.0000 −1.00000
\(362\) 26.8701 26.8701i 1.41226 1.41226i
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 4.24264i 0.220863i
\(370\) 9.89949 29.6985i 0.514650 1.54395i
\(371\) 0 0
\(372\) 0 0
\(373\) −25.0000 25.0000i −1.29445 1.29445i −0.932005 0.362446i \(-0.881942\pi\)
−0.362446 0.932005i \(-0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −42.4264 + 42.4264i −2.18507 + 2.18507i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) −11.3137 11.3137i −0.574367 0.574367i
\(389\) 20.0000i 1.01404i 0.861934 + 0.507020i \(0.169253\pi\)
−0.861934 + 0.507020i \(0.830747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 30.0000i 1.51138i
\(395\) 0 0
\(396\) 0 0
\(397\) 8.48528 8.48528i 0.425864 0.425864i −0.461353 0.887217i \(-0.652636\pi\)
0.887217 + 0.461353i \(0.152636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −16.0000 12.0000i −0.800000 0.600000i
\(401\) 40.0000 1.99750 0.998752 0.0499376i \(-0.0159023\pi\)
0.998752 + 0.0499376i \(0.0159023\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 25.4558i 1.26648i
\(405\) 19.0919 + 6.36396i 0.948683 + 0.316228i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 24.0416i 1.18878i 0.804176 + 0.594391i \(0.202607\pi\)
−0.804176 + 0.594391i \(0.797393\pi\)
\(410\) −4.00000 + 2.00000i −0.197546 + 0.0987730i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 33.9411 1.66410
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 28.0000 1.36464 0.682318 0.731055i \(-0.260972\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 20.0000i 0.971286i
\(425\) −39.5980 + 5.65685i −1.92078 + 0.274398i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 24.0416 + 24.0416i 1.15537 + 1.15537i 0.985460 + 0.169907i \(0.0543467\pi\)
0.169907 + 0.985460i \(0.445653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −40.0000 −1.91565
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 48.0000 48.0000i 2.28313 2.28313i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −13.0000 + 39.0000i −0.616259 + 1.84878i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000i 0.660701i 0.943858 + 0.330350i \(0.107167\pi\)
−0.943858 + 0.330350i \(0.892833\pi\)
\(450\) 3.00000 + 21.0000i 0.141421 + 0.989949i
\(451\) 0 0
\(452\) −30.0000 + 30.0000i −1.41108 + 1.41108i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.0000 25.0000i 1.16945 1.16945i 0.187112 0.982339i \(-0.440087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) −24.0416 24.0416i −1.12339 1.12339i
\(459\) 0 0
\(460\) 0 0
\(461\) 12.7279 0.592798 0.296399 0.955064i \(-0.404214\pi\)
0.296399 + 0.955064i \(0.404214\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 40.0000i 1.85695i
\(465\) 0 0
\(466\) −42.0000 −1.94561
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) −25.4558 25.4558i −1.17670 1.17670i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.0000 15.0000i 0.686803 0.686803i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 59.3970 2.70827
\(482\) −15.5563 + 15.5563i −0.708572 + 0.708572i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) −16.0000 + 8.00000i −0.726523 + 0.363261i
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 2.82843 + 2.82843i 0.128037 + 0.128037i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 56.5685 + 56.5685i 2.54772 + 2.54772i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −18.3848 + 12.7279i −0.822192 + 0.569210i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 27.0000 + 9.00000i 1.20148 + 0.400495i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 38.1838i 1.69247i 0.532813 + 0.846233i \(0.321135\pi\)
−0.532813 + 0.846233i \(0.678865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 45.2548i 1.99611i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 12.0000 36.0000i 0.526235 1.57870i
\(521\) −43.8406 −1.92069 −0.960346 0.278810i \(-0.910060\pi\)
−0.960346 + 0.278810i \(0.910060\pi\)
\(522\) 30.0000 30.0000i 1.31306 1.31306i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 21.2132 + 7.07107i 0.921443 + 0.307148i
\(531\) 0 0
\(532\) 0 0
\(533\) −6.00000 6.00000i −0.259889 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 32.5269 + 32.5269i 1.40233 + 1.40233i
\(539\) 0 0
\(540\) 0 0
\(541\) −42.0000 −1.80572 −0.902861 0.429934i \(-0.858537\pi\)
−0.902861 + 0.429934i \(0.858537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 45.2548i 1.94029i
\(545\) −14.1421 + 42.4264i −0.605783 + 1.81735i
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 14.0000 + 14.0000i 0.598050 + 0.598050i
\(549\) 4.24264i 0.181071i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000i 0.424859i
\(555\) 0 0
\(556\) 0 0
\(557\) 5.00000 5.00000i 0.211857 0.211857i −0.593199 0.805056i \(-0.702135\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 10.0000i 0.421825 0.421825i
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 21.2132 + 42.4264i 0.892446 + 1.78489i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.0000i 1.67689i −0.544988 0.838444i \(-0.683466\pi\)
0.544988 0.838444i \(-0.316534\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −24.0000 −1.00000
\(577\) −1.41421 + 1.41421i −0.0588745 + 0.0588745i −0.735931 0.677057i \(-0.763255\pi\)
0.677057 + 0.735931i \(0.263255\pi\)
\(578\) −47.0000 47.0000i −1.95494 1.95494i
\(579\) 0 0
\(580\) 42.4264 + 14.1421i 1.76166 + 0.587220i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 16.9706i 0.702247i
\(585\) −36.0000 + 18.0000i −1.48842 + 0.744208i
\(586\) −5.65685 −0.233682
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 28.0000 28.0000i 1.15079 1.15079i
\(593\) −32.5269 32.5269i −1.33572 1.33572i −0.900159 0.435561i \(-0.856550\pi\)
−0.435561 0.900159i \(-0.643450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.0000 1.14692
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −41.0122 −1.67292 −0.836461 0.548026i \(-0.815379\pi\)
−0.836461 + 0.548026i \(0.815379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23.3345 7.77817i −0.948683 0.316228i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 4.00000 2.00000i 0.161955 0.0809776i
\(611\) 0 0
\(612\) −33.9411 + 33.9411i −1.37199 + 1.37199i
\(613\) 1.00000 + 1.00000i 0.0403896 + 0.0403896i 0.727013 0.686624i \(-0.240908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 + 3.00000i −0.120775 + 0.120775i −0.764911 0.644136i \(-0.777217\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 36.7696 1.46961
\(627\) 0 0
\(628\) −31.1127 31.1127i −1.24153 1.24153i
\(629\) 79.1960i 3.15775i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 50.0000i 1.98575i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −11.3137 22.6274i −0.447214 0.894427i
\(641\) 50.0000 1.97488 0.987441 0.157991i \(-0.0505015\pi\)
0.987441 + 0.157991i \(0.0505015\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 18.0000 + 18.0000i 0.707107 + 0.707107i
\(649\) 0 0
\(650\) −33.9411 25.4558i −1.33128 0.998460i
\(651\) 0 0
\(652\) 0 0
\(653\) −9.00000 9.00000i −0.352197 0.352197i 0.508729 0.860927i \(-0.330115\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −5.65685 −0.220863
\(657\) −12.7279 + 12.7279i −0.496564 + 0.496564i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −26.8701 −1.04512 −0.522562 0.852601i \(-0.675024\pi\)
−0.522562 + 0.852601i \(0.675024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −42.0000 −1.62747
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 11.0000 + 11.0000i 0.424019 + 0.424019i 0.886585 0.462566i \(-0.153071\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 14.0000i 0.539260i
\(675\) 0 0
\(676\) 46.0000 1.76923
\(677\) 1.41421 1.41421i 0.0543526 0.0543526i −0.679408 0.733761i \(-0.737763\pi\)
0.733761 + 0.679408i \(0.237763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −48.0000 16.0000i −1.84072 0.613572i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 19.7990 9.89949i 0.756481 0.378240i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 42.4264i 1.61632i
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 5.65685 5.65685i 0.215041 0.215041i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8.00000 + 8.00000i −0.303022 + 0.303022i
\(698\) 18.3848 + 18.3848i 0.695874 + 0.695874i
\(699\) 0 0
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −22.6274 −0.851594
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0000i 1.12667i 0.826227 + 0.563337i \(0.190483\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −36.7696 + 36.7696i −1.37800 + 1.37800i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −8.48528 + 25.4558i −0.316228 + 0.948683i
\(721\) 0 0
\(722\) −19.0000 + 19.0000i −0.707107 + 0.707107i
\(723\) 0 0
\(724\) 53.7401i 1.99724i
\(725\) 30.0000 40.0000i 1.11417 1.48556i
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) −18.0000 6.00000i −0.666210 0.222070i
\(731\) 0 0
\(732\) 0 0
\(733\) −38.1838 38.1838i −1.41035 1.41035i −0.757410 0.652940i \(-0.773536\pi\)
−0.652940 0.757410i \(-0.726464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 4.24264 + 4.24264i 0.156174 + 0.156174i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) −19.7990 39.5980i −0.727825 1.45565i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 9.89949 29.6985i 0.362689 1.08807i
\(746\) −50.0000 −1.83063
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 84.8528i 3.09016i
\(755\) 0 0
\(756\) 0 0
\(757\) 17.0000 17.0000i 0.617876 0.617876i −0.327111 0.944986i \(-0.606075\pi\)
0.944986 + 0.327111i \(0.106075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −55.1543 −1.99934 −0.999671 0.0256326i \(-0.991840\pi\)
−0.999671 + 0.0256326i \(0.991840\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 24.0000 + 48.0000i 0.867722 + 1.73544i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 52.3259i 1.88692i 0.331486 + 0.943460i \(0.392450\pi\)
−0.331486 + 0.943460i \(0.607550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.0000 10.0000i 0.359908 0.359908i
\(773\) −24.0416 24.0416i −0.864717 0.864717i 0.127164 0.991882i \(-0.459412\pi\)
−0.991882 + 0.127164i \(0.959412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −22.6274 −0.812277
\(777\) 0 0
\(778\) 20.0000 + 20.0000i 0.717035 + 0.717035i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −44.0000 + 22.0000i −1.57043 + 0.785214i
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 30.0000 + 30.0000i 1.06871 + 1.06871i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 + 6.00000i 0.213066 + 0.213066i
\(794\) 16.9706i 0.602263i
\(795\) 0 0
\(796\) 0 0
\(797\) 36.7696 36.7696i 1.30244 1.30244i 0.375705 0.926739i \(-0.377401\pi\)
0.926739 0.375705i \(-0.122599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −28.0000 + 4.00000i −0.989949 + 0.141421i
\(801\) 55.1543 1.94878
\(802\) 40.0000 40.0000i 1.41245 1.41245i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 25.4558 + 25.4558i 0.895533 + 0.895533i
\(809\) 56.0000i 1.96886i −0.175791 0.984428i \(-0.556248\pi\)
0.175791 0.984428i \(-0.443752\pi\)
\(810\) 25.4558 12.7279i 0.894427 0.447214i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 24.0416 + 24.0416i 0.840596 + 0.840596i
\(819\) 0 0
\(820\) −2.00000 + 6.00000i −0.0698430 + 0.209529i
\(821\) 28.0000 0.977207 0.488603 0.872506i \(-0.337507\pi\)
0.488603 + 0.872506i \(0.337507\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 52.3259i 1.81735i −0.417500 0.908677i \(-0.637094\pi\)
0.417500 0.908677i \(-0.362906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 33.9411 33.9411i 1.17670 1.17670i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −71.0000 −2.44828
\(842\) 28.0000 28.0000i 0.964944 0.964944i
\(843\) 0 0
\(844\) 0 0
\(845\) 16.2635 48.7904i 0.559480 1.67844i
\(846\) 0 0
\(847\) 0 0
\(848\) 20.0000 + 20.0000i 0.686803 + 0.686803i
\(849\) 0 0
\(850\) −33.9411 + 45.2548i −1.16417 + 1.55223i
\(851\) 0 0
\(852\) 0 0
\(853\) −25.4558 25.4558i −0.871592 0.871592i 0.121054 0.992646i \(-0.461372\pi\)
−0.992646 + 0.121054i \(0.961372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.0122 41.0122i 1.40095 1.40095i 0.603858 0.797092i \(-0.293630\pi\)
0.797092 0.603858i \(-0.206370\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −4.00000 8.00000i −0.136004 0.272008i
\(866\) 48.0833 1.63394
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −40.0000 + 40.0000i −1.35457 + 1.35457i
\(873\) 16.9706 + 16.9706i 0.574367 + 0.574367i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23.0000 + 23.0000i −0.776655 + 0.776655i −0.979260 0.202606i \(-0.935059\pi\)
0.202606 + 0.979260i \(0.435059\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7279 0.428815 0.214407 0.976744i \(-0.431218\pi\)
0.214407 + 0.976744i \(0.431218\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 96.0000i 3.22883i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 26.0000 + 52.0000i 0.871522 + 1.74304i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 14.0000 + 14.0000i 0.467186 + 0.467186i
\(899\) 0 0
\(900\) 24.0000 + 18.0000i 0.800000 + 0.600000i
\(901\) 56.5685 1.88457
\(902\) 0 0
\(903\) 0 0
\(904\) 60.0000i 1.99557i
\(905\) −57.0000 19.0000i −1.89474 0.631581i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 38.1838i 1.26648i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 50.0000i 1.65385i
\(915\) 0 0
\(916\) −48.0833 −1.58872
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 12.7279 12.7279i 0.419172 0.419172i
\(923\) 0 0
\(924\) 0 0
\(925\) −49.0000 + 7.00000i −1.61111 + 0.230159i
\(926\) 0 0
\(927\) 0 0
\(928\) 40.0000 + 40.0000i 1.31306 + 1.31306i
\(929\) 4.24264i 0.139197i 0.997575 + 0.0695983i \(0.0221717\pi\)
−0.997575 + 0.0695983i \(0.977828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −42.0000 + 42.0000i −1.37576 + 1.37576i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −50.9117 −1.66410
\(937\) 33.9411 33.9411i 1.10881 1.10881i 0.115501 0.993307i \(-0.463153\pi\)
0.993307 0.115501i \(-0.0368473\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.8701 −0.875939 −0.437969 0.898990i \(-0.644302\pi\)
−0.437969 + 0.898990i \(0.644302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 36.0000i 1.16861i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.0000 + 15.0000i 0.485898 + 0.485898i 0.907009 0.421111i \(-0.138360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 30.0000i 0.971286i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 59.3970 59.3970i 1.91504 1.91504i
\(963\) 0 0
\(964\) 31.1127i 1.00207i
\(965\) −7.07107 14.1421i −0.227626 0.455251i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −22.0000 22.0000i −0.707107 0.707107i
\(969\) 0 0
\(970\) −8.00000 + 24.0000i −0.256865 + 0.770594i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 5.65685 0.181071
\(977\) 27.0000 27.0000i 0.863807 0.863807i −0.127971 0.991778i \(-0.540847\pi\)
0.991778 + 0.127971i \(0.0408466\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 60.0000 1.91565
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 42.4264 21.2132i 1.35182 0.675909i
\(986\) 113.137 3.60302
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −8.48528 + 8.48528i −0.268732 + 0.268732i −0.828589 0.559857i \(-0.810856\pi\)
0.559857 + 0.828589i \(0.310856\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.f.883.1 yes 4
4.3 odd 2 CM 980.2.k.f.883.1 yes 4
5.2 odd 4 inner 980.2.k.f.687.1 4
7.2 even 3 980.2.x.g.263.2 8
7.3 odd 6 980.2.x.g.863.1 8
7.4 even 3 980.2.x.g.863.2 8
7.5 odd 6 980.2.x.g.263.1 8
7.6 odd 2 inner 980.2.k.f.883.2 yes 4
20.7 even 4 inner 980.2.k.f.687.1 4
28.3 even 6 980.2.x.g.863.1 8
28.11 odd 6 980.2.x.g.863.2 8
28.19 even 6 980.2.x.g.263.1 8
28.23 odd 6 980.2.x.g.263.2 8
28.27 even 2 inner 980.2.k.f.883.2 yes 4
35.2 odd 12 980.2.x.g.67.2 8
35.12 even 12 980.2.x.g.67.1 8
35.17 even 12 980.2.x.g.667.1 8
35.27 even 4 inner 980.2.k.f.687.2 yes 4
35.32 odd 12 980.2.x.g.667.2 8
140.27 odd 4 inner 980.2.k.f.687.2 yes 4
140.47 odd 12 980.2.x.g.67.1 8
140.67 even 12 980.2.x.g.667.2 8
140.87 odd 12 980.2.x.g.667.1 8
140.107 even 12 980.2.x.g.67.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.f.687.1 4 5.2 odd 4 inner
980.2.k.f.687.1 4 20.7 even 4 inner
980.2.k.f.687.2 yes 4 35.27 even 4 inner
980.2.k.f.687.2 yes 4 140.27 odd 4 inner
980.2.k.f.883.1 yes 4 1.1 even 1 trivial
980.2.k.f.883.1 yes 4 4.3 odd 2 CM
980.2.k.f.883.2 yes 4 7.6 odd 2 inner
980.2.k.f.883.2 yes 4 28.27 even 2 inner
980.2.x.g.67.1 8 35.12 even 12
980.2.x.g.67.1 8 140.47 odd 12
980.2.x.g.67.2 8 35.2 odd 12
980.2.x.g.67.2 8 140.107 even 12
980.2.x.g.263.1 8 7.5 odd 6
980.2.x.g.263.1 8 28.19 even 6
980.2.x.g.263.2 8 7.2 even 3
980.2.x.g.263.2 8 28.23 odd 6
980.2.x.g.667.1 8 35.17 even 12
980.2.x.g.667.1 8 140.87 odd 12
980.2.x.g.667.2 8 35.32 odd 12
980.2.x.g.667.2 8 140.67 even 12
980.2.x.g.863.1 8 7.3 odd 6
980.2.x.g.863.1 8 28.3 even 6
980.2.x.g.863.2 8 7.4 even 3
980.2.x.g.863.2 8 28.11 odd 6