Properties

Label 980.2.x.g.263.1
Level $980$
Weight $2$
Character 980.263
Analytic conductor $7.825$
Analytic rank $0$
Dimension $8$
CM discriminant -4
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(67,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 263.1
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 980.263
Dual form 980.2.x.g.667.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.73205 + 1.00000i) q^{4} +(-0.448288 - 2.19067i) q^{5} +(-2.00000 - 2.00000i) q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.73205 + 1.00000i) q^{4} +(-0.448288 - 2.19067i) q^{5} +(-2.00000 - 2.00000i) q^{8} +(2.59808 - 1.50000i) q^{9} +(-0.189469 + 3.15660i) q^{10} +(4.24264 + 4.24264i) q^{13} +(2.00000 + 3.46410i) q^{16} +(2.07055 + 7.72741i) q^{17} +(-4.09808 + 1.09808i) q^{18} +(1.41421 - 4.24264i) q^{20} +(-4.59808 + 1.96410i) q^{25} +(-4.24264 - 7.34847i) q^{26} -10.0000i q^{29} +(-1.46410 - 5.46410i) q^{32} -11.3137i q^{34} +6.00000 q^{36} +(9.56218 + 2.56218i) q^{37} +(-3.48477 + 5.27792i) q^{40} -1.41421 q^{41} +(-4.45069 - 5.01910i) q^{45} +(7.00000 - 1.00000i) q^{50} +(3.10583 + 11.5911i) q^{52} +(6.83013 - 1.83013i) q^{53} +(-3.66025 + 13.6603i) q^{58} +(-0.707107 - 1.22474i) q^{61} +8.00000i q^{64} +(7.39230 - 11.1962i) q^{65} +(-4.14110 + 15.4548i) q^{68} +(-8.19615 - 2.19615i) q^{72} +(5.79555 - 1.55291i) q^{73} +(-12.1244 - 7.00000i) q^{74} +(6.69213 - 5.93426i) q^{80} +(4.50000 - 7.79423i) q^{81} +(1.93185 + 0.517638i) q^{82} +(16.0000 - 8.00000i) q^{85} +(15.9217 - 9.19239i) q^{89} +(4.24264 + 8.48528i) q^{90} +(-5.65685 + 5.65685i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} - 16 q^{8} + 16 q^{16} - 12 q^{18} - 16 q^{25} + 16 q^{32} + 48 q^{36} + 28 q^{37} + 56 q^{50} + 20 q^{53} + 40 q^{58} - 24 q^{65} - 24 q^{72} + 36 q^{81} + 128 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.965926 0.258819i
\(3\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) −0.448288 2.19067i −0.200480 0.979698i
\(6\) 0 0
\(7\) 0 0
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 2.59808 1.50000i 0.866025 0.500000i
\(10\) −0.189469 + 3.15660i −0.0599153 + 0.998203i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 4.24264 + 4.24264i 1.17670 + 1.17670i 0.980581 + 0.196116i \(0.0628330\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 2.07055 + 7.72741i 0.502183 + 1.87417i 0.485363 + 0.874313i \(0.338688\pi\)
0.0168199 + 0.999859i \(0.494646\pi\)
\(18\) −4.09808 + 1.09808i −0.965926 + 0.258819i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 1.41421 4.24264i 0.316228 0.948683i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(24\) 0 0
\(25\) −4.59808 + 1.96410i −0.919615 + 0.392820i
\(26\) −4.24264 7.34847i −0.832050 1.44115i
\(27\) 0 0
\(28\) 0 0
\(29\) 10.0000i 1.85695i −0.371391 0.928477i \(-0.621119\pi\)
0.371391 0.928477i \(-0.378881\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) −1.46410 5.46410i −0.258819 0.965926i
\(33\) 0 0
\(34\) 11.3137i 1.94029i
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) 9.56218 + 2.56218i 1.57201 + 0.421219i 0.936442 0.350823i \(-0.114098\pi\)
0.635571 + 0.772043i \(0.280765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −3.48477 + 5.27792i −0.550990 + 0.834512i
\(41\) −1.41421 −0.220863 −0.110432 0.993884i \(-0.535223\pi\)
−0.110432 + 0.993884i \(0.535223\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) −4.45069 5.01910i −0.663470 0.748203i
\(46\) 0 0
\(47\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 7.00000 1.00000i 0.989949 0.141421i
\(51\) 0 0
\(52\) 3.10583 + 11.5911i 0.430701 + 1.60740i
\(53\) 6.83013 1.83013i 0.938190 0.251387i 0.242846 0.970065i \(-0.421919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −3.66025 + 13.6603i −0.480615 + 1.79368i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −0.707107 1.22474i −0.0905357 0.156813i 0.817201 0.576353i \(-0.195525\pi\)
−0.907737 + 0.419540i \(0.862191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 7.39230 11.1962i 0.916903 1.38871i
\(66\) 0 0
\(67\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(68\) −4.14110 + 15.4548i −0.502183 + 1.87417i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −8.19615 2.19615i −0.965926 0.258819i
\(73\) 5.79555 1.55291i 0.678318 0.181755i 0.0968194 0.995302i \(-0.469133\pi\)
0.581499 + 0.813547i \(0.302466\pi\)
\(74\) −12.1244 7.00000i −1.40943 0.813733i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 6.69213 5.93426i 0.748203 0.663470i
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 1.93185 + 0.517638i 0.213337 + 0.0571636i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 16.0000 8.00000i 1.73544 0.867722i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.9217 9.19239i 1.68770 0.974391i 0.731418 0.681930i \(-0.238859\pi\)
0.956277 0.292462i \(-0.0944744\pi\)
\(90\) 4.24264 + 8.48528i 0.447214 + 0.894427i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.65685 + 5.65685i −0.574367 + 0.574367i −0.933346 0.358979i \(-0.883125\pi\)
0.358979 + 0.933346i \(0.383125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.92820 1.19615i −0.992820 0.119615i
\(101\) −6.36396 + 11.0227i −0.633238 + 1.09680i 0.353648 + 0.935379i \(0.384941\pi\)
−0.986886 + 0.161421i \(0.948392\pi\)
\(102\) 0 0
\(103\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(104\) 16.9706i 1.66410i
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(108\) 0 0
\(109\) 17.3205 + 10.0000i 1.65900 + 0.957826i 0.973176 + 0.230063i \(0.0738931\pi\)
0.685828 + 0.727764i \(0.259440\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.0000 15.0000i −1.41108 1.41108i −0.752577 0.658505i \(-0.771189\pi\)
−0.658505 0.752577i \(-0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 10.0000 17.3205i 0.928477 1.60817i
\(117\) 17.3867 + 4.65874i 1.60740 + 0.430701i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 0.517638 + 1.93185i 0.0468648 + 0.174902i
\(123\) 0 0
\(124\) 0 0
\(125\) 6.36396 + 9.19239i 0.569210 + 0.822192i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 2.92820 10.9282i 0.258819 0.965926i
\(129\) 0 0
\(130\) −14.1962 + 12.5885i −1.24508 + 1.10408i
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 11.3137 19.5959i 0.970143 1.68034i
\(137\) −2.56218 9.56218i −0.218902 0.816952i −0.984757 0.173939i \(-0.944351\pi\)
0.765855 0.643013i \(-0.222316\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 10.3923 + 6.00000i 0.866025 + 0.500000i
\(145\) −21.9067 + 4.48288i −1.81925 + 0.372283i
\(146\) −8.48528 −0.702247
\(147\) 0 0
\(148\) 14.0000 + 14.0000i 1.15079 + 1.15079i
\(149\) 12.1244 7.00000i 0.993266 0.573462i 0.0870170 0.996207i \(-0.472267\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(150\) 0 0
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 16.9706 + 16.9706i 1.37199 + 1.37199i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.69402 21.2504i −0.454432 1.69596i −0.689752 0.724046i \(-0.742280\pi\)
0.235320 0.971918i \(-0.424386\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −11.3137 + 5.65685i −0.894427 + 0.447214i
\(161\) 0 0
\(162\) −9.00000 + 9.00000i −0.707107 + 0.707107i
\(163\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(164\) −2.44949 1.41421i −0.191273 0.110432i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 23.0000i 1.76923i
\(170\) −24.7846 + 5.07180i −1.90089 + 0.388989i
\(171\) 0 0
\(172\) 0 0
\(173\) −1.03528 + 3.86370i −0.0787106 + 0.293752i −0.994049 0.108933i \(-0.965256\pi\)
0.915338 + 0.402685i \(0.131923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −25.1141 + 6.72930i −1.88238 + 0.504382i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −2.68973 13.1440i −0.200480 0.979698i
\(181\) −26.8701 −1.99724 −0.998618 0.0525588i \(-0.983262\pi\)
−0.998618 + 0.0525588i \(0.983262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.32628 22.0962i 0.0975101 1.62454i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) −6.83013 + 1.83013i −0.491643 + 0.131735i −0.496119 0.868255i \(-0.665242\pi\)
0.00447566 + 0.999990i \(0.498575\pi\)
\(194\) 9.79796 5.65685i 0.703452 0.406138i
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0000 + 15.0000i −1.06871 + 1.06871i −0.0712470 + 0.997459i \(0.522698\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 13.1244 + 5.26795i 0.928032 + 0.372500i
\(201\) 0 0
\(202\) 12.7279 12.7279i 0.895533 0.895533i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.633975 + 3.09808i 0.0442787 + 0.216379i
\(206\) 0 0
\(207\) 0 0
\(208\) −6.21166 + 23.1822i −0.430701 + 1.60740i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 13.6603 + 3.66025i 0.938190 + 0.251387i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −20.0000 20.0000i −1.35457 1.35457i
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0000 + 41.5692i −1.61441 + 2.79625i
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) −9.00000 + 12.0000i −0.600000 + 0.800000i
\(226\) 15.0000 + 25.9808i 0.997785 + 1.72821i
\(227\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(228\) 0 0
\(229\) 20.8207 12.0208i 1.37587 0.794358i 0.384209 0.923246i \(-0.374474\pi\)
0.991659 + 0.128888i \(0.0411409\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −20.0000 + 20.0000i −1.31306 + 1.31306i
\(233\) −7.68653 + 28.6865i −0.503562 + 1.87932i −0.0280525 + 0.999606i \(0.508931\pi\)
−0.475509 + 0.879711i \(0.657736\pi\)
\(234\) −22.0454 12.7279i −1.44115 0.832050i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −7.77817 + 13.4722i −0.501036 + 0.867820i 0.498963 + 0.866623i \(0.333714\pi\)
−0.999999 + 0.00119700i \(0.999619\pi\)
\(242\) 4.02628 + 15.0263i 0.258819 + 0.965926i
\(243\) 0 0
\(244\) 2.82843i 0.181071i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −5.32868 14.8864i −0.337016 0.941499i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −30.9096 8.28221i −1.92809 0.516630i −0.980189 0.198062i \(-0.936535\pi\)
−0.947900 0.318568i \(-0.896798\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 24.0000 12.0000i 1.48842 0.744208i
\(261\) −15.0000 25.9808i −0.928477 1.60817i
\(262\) 0 0
\(263\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(264\) 0 0
\(265\) −7.07107 14.1421i −0.434372 0.868744i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 28.1691 + 16.2635i 1.71750 + 0.991600i 0.923421 + 0.383789i \(0.125381\pi\)
0.794082 + 0.607811i \(0.207952\pi\)
\(270\) 0 0
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) −22.6274 + 22.6274i −1.37199 + 1.37199i
\(273\) 0 0
\(274\) 14.0000i 0.845771i
\(275\) 0 0
\(276\) 0 0
\(277\) −1.83013 6.83013i −0.109962 0.410383i 0.888899 0.458103i \(-0.151471\pi\)
−0.998861 + 0.0477206i \(0.984804\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −12.0000 12.0000i −0.707107 0.707107i
\(289\) −40.7032 + 23.5000i −2.39431 + 1.38235i
\(290\) 31.5660 + 1.89469i 1.85362 + 0.111260i
\(291\) 0 0
\(292\) 11.5911 + 3.10583i 0.678318 + 0.181755i
\(293\) 2.82843 + 2.82843i 0.165238 + 0.165238i 0.784883 0.619644i \(-0.212723\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −14.0000 24.2487i −0.813733 1.40943i
\(297\) 0 0
\(298\) −19.1244 + 5.12436i −1.10784 + 0.296846i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.36603 + 2.09808i −0.135478 + 0.120135i
\(306\) −16.9706 29.3939i −0.970143 1.68034i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −6.72930 + 25.1141i −0.380362 + 1.41953i 0.464987 + 0.885317i \(0.346059\pi\)
−0.845349 + 0.534214i \(0.820608\pi\)
\(314\) 31.1127i 1.75579i
\(315\) 0 0
\(316\) 0 0
\(317\) 34.1506 + 9.15064i 1.91809 + 0.513951i 0.989882 + 0.141890i \(0.0453179\pi\)
0.928208 + 0.372061i \(0.121349\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.5254 3.58630i 0.979698 0.200480i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 15.5885 9.00000i 0.866025 0.500000i
\(325\) −27.8410 11.1750i −1.54434 0.619878i
\(326\) 0 0
\(327\) 0 0
\(328\) 2.82843 + 2.82843i 0.156174 + 0.156174i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 28.6865 7.68653i 1.57201 0.421219i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.00000 + 7.00000i −0.381314 + 0.381314i −0.871576 0.490261i \(-0.836901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 8.41858 31.4186i 0.457911 1.70895i
\(339\) 0 0
\(340\) 35.7128 + 2.14359i 1.93680 + 0.116253i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 2.82843 4.89898i 0.152057 0.263371i
\(347\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(348\) 0 0
\(349\) 18.3848i 0.984115i −0.870563 0.492057i \(-0.836245\pi\)
0.870563 0.492057i \(-0.163755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.4548 + 4.14110i −0.822577 + 0.220409i −0.645473 0.763783i \(-0.723340\pi\)
−0.177104 + 0.984192i \(0.556673\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 36.7696 1.94878
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) −1.13681 + 18.9396i −0.0599153 + 0.998203i
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 36.7052 + 9.83512i 1.92918 + 0.516923i
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) 0 0
\(367\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(368\) 0 0
\(369\) −3.67423 + 2.12132i −0.191273 + 0.110432i
\(370\) −9.89949 + 29.6985i −0.514650 + 1.54395i
\(371\) 0 0
\(372\) 0 0
\(373\) −9.15064 + 34.1506i −0.473802 + 1.76825i 0.152115 + 0.988363i \(0.451392\pi\)
−0.625917 + 0.779890i \(0.715275\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.4264 42.4264i 2.18507 2.18507i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) −15.4548 + 4.14110i −0.784599 + 0.210233i
\(389\) −17.3205 10.0000i −0.878185 0.507020i −0.00812520 0.999967i \(-0.502586\pi\)
−0.870059 + 0.492947i \(0.835920\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 25.9808 15.0000i 1.30889 0.755689i
\(395\) 0 0
\(396\) 0 0
\(397\) 11.5911 + 3.10583i 0.581741 + 0.155877i 0.537676 0.843152i \(-0.319302\pi\)
0.0440652 + 0.999029i \(0.485969\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −16.0000 12.0000i −0.800000 0.600000i
\(401\) −20.0000 34.6410i −0.998752 1.72989i −0.542623 0.839976i \(-0.682569\pi\)
−0.456129 0.889914i \(-0.650764\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −22.0454 + 12.7279i −1.09680 + 0.633238i
\(405\) −19.0919 6.36396i −0.948683 0.316228i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 20.8207 + 12.0208i 1.02952 + 0.594391i 0.916846 0.399241i \(-0.130726\pi\)
0.112670 + 0.993632i \(0.464060\pi\)
\(410\) 0.267949 4.46410i 0.0132331 0.220466i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 16.9706 29.3939i 0.832050 1.44115i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 28.0000 1.36464 0.682318 0.731055i \(-0.260972\pi\)
0.682318 + 0.731055i \(0.260972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −17.3205 10.0000i −0.841158 0.485643i
\(425\) −24.6980 31.4644i −1.19803 1.52625i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0 0
\(433\) −24.0416 24.0416i −1.15537 1.15537i −0.985460 0.169907i \(-0.945653\pi\)
−0.169907 0.985460i \(-0.554347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 20.0000 + 34.6410i 0.957826 + 1.65900i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 48.0000 48.0000i 2.28313 2.28313i
\(443\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(444\) 0 0
\(445\) −27.2750 30.7583i −1.29296 1.45808i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.0000i 0.660701i 0.943858 + 0.330350i \(0.107167\pi\)
−0.943858 + 0.330350i \(0.892833\pi\)
\(450\) 16.6865 13.0981i 0.786611 0.617449i
\(451\) 0 0
\(452\) −10.9808 40.9808i −0.516492 1.92757i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −34.1506 9.15064i −1.59750 0.428049i −0.653213 0.757174i \(-0.726579\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(458\) −32.8415 + 8.79985i −1.53458 + 0.411190i
\(459\) 0 0
\(460\) 0 0
\(461\) −12.7279 −0.592798 −0.296399 0.955064i \(-0.595786\pi\)
−0.296399 + 0.955064i \(0.595786\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 34.6410 20.0000i 1.60817 0.928477i
\(465\) 0 0
\(466\) 21.0000 36.3731i 0.972806 1.68495i
\(467\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(468\) 25.4558 + 25.4558i 1.17670 + 1.17670i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.0000 15.0000i 0.686803 0.686803i
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 29.6985 + 51.4393i 1.35413 + 2.34543i
\(482\) 15.5563 15.5563i 0.708572 0.708572i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 14.9282 + 9.85641i 0.677855 + 0.447556i
\(486\) 0 0
\(487\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(488\) −1.03528 + 3.86370i −0.0468648 + 0.174902i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 77.2741 20.7055i 3.48025 0.932530i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(500\) 1.83032 + 22.2856i 0.0818542 + 0.996644i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 27.0000 + 9.00000i 1.20148 + 0.400495i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −33.0681 + 19.0919i −1.46572 + 0.846233i −0.999266 0.0383134i \(-0.987801\pi\)
−0.466453 + 0.884546i \(0.654468\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 39.1918 + 22.6274i 1.72868 + 0.998053i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −37.1769 + 7.60770i −1.63032 + 0.333620i
\(521\) −21.9203 + 37.9671i −0.960346 + 1.66337i −0.238716 + 0.971089i \(0.576727\pi\)
−0.721630 + 0.692279i \(0.756607\pi\)
\(522\) 10.9808 + 40.9808i 0.480615 + 1.79368i
\(523\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.9186 11.5000i −0.866025 0.500000i
\(530\) 4.48288 + 21.9067i 0.194724 + 0.951567i
\(531\) 0 0
\(532\) 0 0
\(533\) −6.00000 6.00000i −0.259889 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −32.5269 32.5269i −1.40233 1.40233i
\(539\) 0 0
\(540\) 0 0
\(541\) 21.0000 + 36.3731i 0.902861 + 1.56380i 0.823764 + 0.566933i \(0.191870\pi\)
0.0790969 + 0.996867i \(0.474796\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 39.1918 22.6274i 1.68034 0.970143i
\(545\) 14.1421 42.4264i 0.605783 1.81735i
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 5.12436 19.1244i 0.218902 0.816952i
\(549\) −3.67423 2.12132i −0.156813 0.0905357i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000i 0.424859i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.83013 + 6.83013i 0.0775450 + 0.289402i 0.993798 0.111198i \(-0.0354686\pi\)
−0.916253 + 0.400599i \(0.868802\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −13.6603 3.66025i −0.576223 0.154398i
\(563\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(564\) 0 0
\(565\) −26.1357 + 39.5844i −1.09954 + 1.66533i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −34.6410 + 20.0000i −1.45223 + 0.838444i −0.998608 0.0527519i \(-0.983201\pi\)
−0.453619 + 0.891196i \(0.649867\pi\)
\(570\) 0 0
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.500000 + 0.866025i
\(577\) 0.517638 + 1.93185i 0.0215496 + 0.0804240i 0.975863 0.218383i \(-0.0700781\pi\)
−0.954314 + 0.298807i \(0.903411\pi\)
\(578\) 64.2032 17.2032i 2.67050 0.715559i
\(579\) 0 0
\(580\) −42.4264 14.1421i −1.76166 0.587220i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −14.6969 8.48528i −0.608164 0.351123i
\(585\) 2.41154 40.1769i 0.0997050 1.66111i
\(586\) −2.82843 4.89898i −0.116841 0.202375i
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 10.2487 + 38.2487i 0.421219 + 1.57201i
\(593\) 11.9057 44.4326i 0.488908 1.82463i −0.0728728 0.997341i \(-0.523217\pi\)
0.561780 0.827286i \(-0.310117\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.0000 1.14692
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 41.0122 1.67292 0.836461 0.548026i \(-0.184621\pi\)
0.836461 + 0.548026i \(0.184621\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −18.4034 + 16.3192i −0.748203 + 0.663470i
\(606\) 0 0
\(607\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 4.00000 2.00000i 0.161955 0.0809776i
\(611\) 0 0
\(612\) 12.4233 + 46.3644i 0.502183 + 1.87417i
\(613\) −1.36603 + 0.366025i −0.0551732 + 0.0147836i −0.286300 0.958140i \(-0.592425\pi\)
0.231127 + 0.972924i \(0.425759\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 + 3.00000i −0.120775 + 0.120775i −0.764911 0.644136i \(-0.777217\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 17.2846 18.0622i 0.691384 0.722487i
\(626\) 18.3848 31.8434i 0.734803 1.27272i
\(627\) 0 0
\(628\) 11.3880 42.5007i 0.454432 1.69596i
\(629\) 79.1960i 3.15775i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −43.3013 25.0000i −1.71971 0.992877i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −25.2528 1.51575i −0.998203 0.0599153i
\(641\) −25.0000 + 43.3013i −0.987441 + 1.71030i −0.356897 + 0.934144i \(0.616165\pi\)
−0.630544 + 0.776153i \(0.717168\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(648\) −24.5885 + 6.58846i −0.965926 + 0.258819i
\(649\) 0 0
\(650\) 33.9411 + 25.4558i 1.33128 + 0.998460i
\(651\) 0 0
\(652\) 0 0
\(653\) −3.29423 + 12.2942i −0.128913 + 0.481110i −0.999949 0.0101092i \(-0.996782\pi\)
0.871036 + 0.491220i \(0.163449\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.82843 4.89898i −0.110432 0.191273i
\(657\) 12.7279 12.7279i 0.496564 0.496564i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.4350 + 23.2702i −0.522562 + 0.905104i 0.477093 + 0.878853i \(0.341690\pi\)
−0.999655 + 0.0262514i \(0.991643\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −42.0000 −1.62747
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 11.0000 + 11.0000i 0.424019 + 0.424019i 0.886585 0.462566i \(-0.153071\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 12.1244 7.00000i 0.467013 0.269630i
\(675\) 0 0
\(676\) −23.0000 + 39.8372i −0.884615 + 1.53220i
\(677\) 1.93185 + 0.517638i 0.0742471 + 0.0198944i 0.295751 0.955265i \(-0.404430\pi\)
−0.221504 + 0.975159i \(0.571097\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −48.0000 16.0000i −1.84072 0.613572i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 0 0
\(685\) −19.7990 + 9.89949i −0.756481 + 0.378240i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 36.7423 + 21.2132i 1.39977 + 0.808159i
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) −5.65685 + 5.65685i −0.215041 + 0.215041i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.92820 10.9282i −0.110914 0.413935i
\(698\) −6.72930 + 25.1141i −0.254708 + 0.950582i
\(699\) 0 0
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 22.6274 0.851594
\(707\) 0 0
\(708\) 0 0
\(709\) 25.9808 15.0000i 0.975728 0.563337i 0.0747503 0.997202i \(-0.476184\pi\)
0.900978 + 0.433865i \(0.142851\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −50.2281 13.4586i −1.88238 0.504382i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 8.48528 25.4558i 0.316228 0.948683i
\(721\) 0 0
\(722\) −19.0000 + 19.0000i −0.707107 + 0.707107i
\(723\) 0 0
\(724\) −46.5403 26.8701i −1.72966 0.998618i
\(725\) 19.6410 + 45.9808i 0.729449 + 1.70768i
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 3.80385 + 18.5885i 0.140787 + 0.687990i
\(731\) 0 0
\(732\) 0 0
\(733\) 13.9762 52.1600i 0.516224 1.92657i 0.186757 0.982406i \(-0.440202\pi\)
0.329466 0.944167i \(-0.393131\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 5.79555 1.55291i 0.213337 0.0571636i
\(739\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 24.3934 36.9454i 0.896718 1.35814i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) −20.7699 23.4225i −0.760950 0.858132i
\(746\) 25.0000 43.3013i 0.915315 1.58537i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −73.4847 + 42.4264i −2.67615 + 1.54508i
\(755\) 0 0
\(756\) 0 0
\(757\) 17.0000 17.0000i 0.617876 0.617876i −0.327111 0.944986i \(-0.606075\pi\)
0.944986 + 0.327111i \(0.106075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −27.5772 47.7650i −0.999671 1.73148i −0.522034 0.852925i \(-0.674827\pi\)
−0.477637 0.878557i \(-0.658507\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 29.5692 44.7846i 1.06908 1.61919i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 52.3259i 1.88692i −0.331486 0.943460i \(-0.607550\pi\)
0.331486 0.943460i \(-0.392450\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.6603 3.66025i −0.491643 0.131735i
\(773\) −32.8415 + 8.79985i −1.18123 + 0.316509i −0.795413 0.606068i \(-0.792746\pi\)
−0.385813 + 0.922577i \(0.626079\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 22.6274 0.812277
\(777\) 0 0
\(778\) 20.0000 + 20.0000i 0.717035 + 0.717035i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −44.0000 + 22.0000i −1.57043 + 0.785214i
\(786\) 0 0
\(787\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(788\) −40.9808 + 10.9808i −1.45988 + 0.391173i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.19615 8.19615i 0.0779877 0.291054i
\(794\) −14.6969 8.48528i −0.521575 0.301131i
\(795\) 0 0
\(796\) 0 0
\(797\) −36.7696 + 36.7696i −1.30244 + 1.30244i −0.375705 + 0.926739i \(0.622599\pi\)
−0.926739 + 0.375705i \(0.877401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 17.4641 + 22.2487i 0.617449 + 0.786611i
\(801\) 27.5772 47.7650i 0.974391 1.68770i
\(802\) 14.6410 + 54.6410i 0.516992 + 1.92944i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 34.7733 9.31749i 1.22332 0.327788i
\(809\) 48.4974 + 28.0000i 1.70508 + 0.984428i 0.940435 + 0.339975i \(0.110418\pi\)
0.764644 + 0.644453i \(0.222915\pi\)
\(810\) 23.7506 + 15.6814i 0.834512 + 0.550990i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −24.0416 24.0416i −0.840596 0.840596i
\(819\) 0 0
\(820\) −2.00000 + 6.00000i −0.0698430 + 0.209529i
\(821\) −14.0000 24.2487i −0.488603 0.846286i 0.511311 0.859396i \(-0.329160\pi\)
−0.999914 + 0.0131101i \(0.995827\pi\)
\(822\) 0 0
\(823\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) −45.3156 26.1630i −1.57387 0.908677i −0.995687 0.0927727i \(-0.970427\pi\)
−0.578187 0.815904i \(-0.696240\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −33.9411 + 33.9411i −1.17670 + 1.17670i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −71.0000 −2.44828
\(842\) −38.2487 10.2487i −1.31814 0.353194i
\(843\) 0 0
\(844\) 0 0
\(845\) 50.3854 10.3106i 1.73331 0.354696i
\(846\) 0 0
\(847\) 0 0
\(848\) 20.0000 + 20.0000i 0.686803 + 0.686803i
\(849\) 0 0
\(850\) 22.2213 + 52.0213i 0.762183 + 1.78432i
\(851\) 0 0
\(852\) 0 0
\(853\) 25.4558 + 25.4558i 0.871592 + 0.871592i 0.992646 0.121054i \(-0.0386275\pi\)
−0.121054 + 0.992646i \(0.538628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.0115 56.0237i −0.512783 1.91373i −0.388373 0.921502i \(-0.626963\pi\)
−0.124410 0.992231i \(-0.539704\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(864\) 0 0
\(865\) 8.92820 + 0.535898i 0.303568 + 0.0182211i
\(866\) 24.0416 + 41.6413i 0.816968 + 1.41503i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −14.6410 54.6410i −0.495807 1.85038i
\(873\) −6.21166 + 23.1822i −0.210233 + 0.784599i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31.4186 + 8.41858i 1.06093 + 0.284275i 0.746762 0.665092i \(-0.231608\pi\)
0.314169 + 0.949367i \(0.398274\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.7279 −0.428815 −0.214407 0.976744i \(-0.568782\pi\)
−0.214407 + 0.976744i \(0.568782\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) −83.1384 + 48.0000i −2.79625 + 1.61441i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 26.0000 + 52.0000i 0.871522 + 1.74304i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 5.12436 19.1244i 0.171002 0.638188i
\(899\) 0 0
\(900\) −27.5885 + 11.7846i −0.919615 + 0.392820i
\(901\) 28.2843 + 48.9898i 0.942286 + 1.63209i
\(902\) 0 0
\(903\) 0 0
\(904\) 60.0000i 1.99557i
\(905\) 12.0455 + 58.8634i 0.400407 + 1.95669i
\(906\) 0 0
\(907\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(908\) 0 0
\(909\) 38.1838i 1.26648i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 43.3013 + 25.0000i 1.43228 + 0.826927i
\(915\) 0 0
\(916\) 48.0833 1.58872
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.3867 + 4.65874i 0.572599 + 0.153428i
\(923\) 0 0
\(924\) 0 0
\(925\) −49.0000 + 7.00000i −1.61111 + 0.230159i
\(926\) 0 0
\(927\) 0 0
\(928\) −54.6410 + 14.6410i −1.79368 + 0.480615i
\(929\) −3.67423 + 2.12132i −0.120548 + 0.0695983i −0.559061 0.829126i \(-0.688838\pi\)
0.438514 + 0.898725i \(0.355505\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −42.0000 + 42.0000i −1.37576 + 1.37576i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −25.4558 44.0908i −0.832050 1.44115i
\(937\) −33.9411 + 33.9411i −1.10881 + 1.10881i −0.115501 + 0.993307i \(0.536847\pi\)
−0.993307 + 0.115501i \(0.963153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.4350 + 23.2702i −0.437969 + 0.758585i −0.997533 0.0702023i \(-0.977636\pi\)
0.559563 + 0.828788i \(0.310969\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(948\) 0 0
\(949\) 31.1769 + 18.0000i 1.01205 + 0.584305i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.0000 + 15.0000i 0.485898 + 0.485898i 0.907009 0.421111i \(-0.138360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) −25.9808 + 15.0000i −0.841158 + 0.485643i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) −21.7408 81.1378i −0.700952 2.61599i
\(963\) 0 0
\(964\) −26.9444 + 15.5563i −0.867820 + 0.501036i
\(965\) 7.07107 + 14.1421i 0.227626 + 0.455251i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) −8.05256 + 30.0526i −0.258819 + 0.965926i
\(969\) 0 0
\(970\) −16.7846 18.9282i −0.538921 0.607748i
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 2.82843 4.89898i 0.0905357 0.156813i
\(977\) 9.88269 + 36.8827i 0.316175 + 1.17998i 0.922890 + 0.385063i \(0.125820\pi\)
−0.606715 + 0.794919i \(0.707513\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 60.0000 1.91565
\(982\) 0 0
\(983\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(984\) 0 0
\(985\) 39.5844 + 26.1357i 1.26126 + 0.832754i
\(986\) −113.137 −3.60302
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.10583 + 11.5911i 0.0983626 + 0.367094i 0.997508 0.0705563i \(-0.0224774\pi\)
−0.899145 + 0.437650i \(0.855811\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.g.263.1 8
4.3 odd 2 CM 980.2.x.g.263.1 8
5.2 odd 4 inner 980.2.x.g.67.1 8
7.2 even 3 inner 980.2.x.g.863.1 8
7.3 odd 6 980.2.k.f.883.1 yes 4
7.4 even 3 980.2.k.f.883.2 yes 4
7.5 odd 6 inner 980.2.x.g.863.2 8
7.6 odd 2 inner 980.2.x.g.263.2 8
20.7 even 4 inner 980.2.x.g.67.1 8
28.3 even 6 980.2.k.f.883.1 yes 4
28.11 odd 6 980.2.k.f.883.2 yes 4
28.19 even 6 inner 980.2.x.g.863.2 8
28.23 odd 6 inner 980.2.x.g.863.1 8
28.27 even 2 inner 980.2.x.g.263.2 8
35.2 odd 12 inner 980.2.x.g.667.1 8
35.12 even 12 inner 980.2.x.g.667.2 8
35.17 even 12 980.2.k.f.687.1 4
35.27 even 4 inner 980.2.x.g.67.2 8
35.32 odd 12 980.2.k.f.687.2 yes 4
140.27 odd 4 inner 980.2.x.g.67.2 8
140.47 odd 12 inner 980.2.x.g.667.2 8
140.67 even 12 980.2.k.f.687.2 yes 4
140.87 odd 12 980.2.k.f.687.1 4
140.107 even 12 inner 980.2.x.g.667.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.f.687.1 4 35.17 even 12
980.2.k.f.687.1 4 140.87 odd 12
980.2.k.f.687.2 yes 4 35.32 odd 12
980.2.k.f.687.2 yes 4 140.67 even 12
980.2.k.f.883.1 yes 4 7.3 odd 6
980.2.k.f.883.1 yes 4 28.3 even 6
980.2.k.f.883.2 yes 4 7.4 even 3
980.2.k.f.883.2 yes 4 28.11 odd 6
980.2.x.g.67.1 8 5.2 odd 4 inner
980.2.x.g.67.1 8 20.7 even 4 inner
980.2.x.g.67.2 8 35.27 even 4 inner
980.2.x.g.67.2 8 140.27 odd 4 inner
980.2.x.g.263.1 8 1.1 even 1 trivial
980.2.x.g.263.1 8 4.3 odd 2 CM
980.2.x.g.263.2 8 7.6 odd 2 inner
980.2.x.g.263.2 8 28.27 even 2 inner
980.2.x.g.667.1 8 35.2 odd 12 inner
980.2.x.g.667.1 8 140.107 even 12 inner
980.2.x.g.667.2 8 35.12 even 12 inner
980.2.x.g.667.2 8 140.47 odd 12 inner
980.2.x.g.863.1 8 7.2 even 3 inner
980.2.x.g.863.1 8 28.23 odd 6 inner
980.2.x.g.863.2 8 7.5 odd 6 inner
980.2.x.g.863.2 8 28.19 even 6 inner