Properties

Label 980.2.m.b
Level $980$
Weight $2$
Character orbit 980.m
Analytic conductor $7.825$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(97,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 16 q^{11} - 48 q^{23} + 32 q^{25} - 32 q^{37} + 16 q^{43} + 48 q^{51} - 24 q^{53} + 64 q^{65} - 32 q^{67} + 8 q^{81} - 64 q^{85} - 96 q^{93} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1 0 −2.10245 2.10245i 0 1.53410 + 1.62682i 0 0 0 5.84062i 0
97.2 0 −1.62809 1.62809i 0 1.99300 + 1.01388i 0 0 0 2.30136i 0
97.3 0 −1.42564 1.42564i 0 −2.11555 + 0.724199i 0 0 0 1.06489i 0
97.4 0 −0.650442 0.650442i 0 2.05263 0.886973i 0 0 0 2.15385i 0
97.5 0 −0.562914 0.562914i 0 −1.87811 1.21356i 0 0 0 2.36626i 0
97.6 0 −0.395749 0.395749i 0 0.677040 2.13111i 0 0 0 2.68677i 0
97.7 0 0.395749 + 0.395749i 0 −0.677040 + 2.13111i 0 0 0 2.68677i 0
97.8 0 0.562914 + 0.562914i 0 1.87811 + 1.21356i 0 0 0 2.36626i 0
97.9 0 0.650442 + 0.650442i 0 −2.05263 + 0.886973i 0 0 0 2.15385i 0
97.10 0 1.42564 + 1.42564i 0 2.11555 0.724199i 0 0 0 1.06489i 0
97.11 0 1.62809 + 1.62809i 0 −1.99300 1.01388i 0 0 0 2.30136i 0
97.12 0 2.10245 + 2.10245i 0 −1.53410 1.62682i 0 0 0 5.84062i 0
293.1 0 −2.10245 + 2.10245i 0 1.53410 1.62682i 0 0 0 5.84062i 0
293.2 0 −1.62809 + 1.62809i 0 1.99300 1.01388i 0 0 0 2.30136i 0
293.3 0 −1.42564 + 1.42564i 0 −2.11555 0.724199i 0 0 0 1.06489i 0
293.4 0 −0.650442 + 0.650442i 0 2.05263 + 0.886973i 0 0 0 2.15385i 0
293.5 0 −0.562914 + 0.562914i 0 −1.87811 + 1.21356i 0 0 0 2.36626i 0
293.6 0 −0.395749 + 0.395749i 0 0.677040 + 2.13111i 0 0 0 2.68677i 0
293.7 0 0.395749 0.395749i 0 −0.677040 2.13111i 0 0 0 2.68677i 0
293.8 0 0.562914 0.562914i 0 1.87811 1.21356i 0 0 0 2.36626i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.b odd 2 1 inner
35.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.m.b 24
5.c odd 4 1 inner 980.2.m.b 24
7.b odd 2 1 inner 980.2.m.b 24
7.c even 3 2 980.2.v.c 48
7.d odd 6 2 980.2.v.c 48
35.f even 4 1 inner 980.2.m.b 24
35.k even 12 2 980.2.v.c 48
35.l odd 12 2 980.2.v.c 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
980.2.m.b 24 1.a even 1 1 trivial
980.2.m.b 24 5.c odd 4 1 inner
980.2.m.b 24 7.b odd 2 1 inner
980.2.m.b 24 35.f even 4 1 inner
980.2.v.c 48 7.c even 3 2
980.2.v.c 48 7.d odd 6 2
980.2.v.c 48 35.k even 12 2
980.2.v.c 48 35.l odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 124T_{3}^{20} + 4102T_{3}^{16} + 41148T_{3}^{12} + 45697T_{3}^{8} + 14528T_{3}^{4} + 1024 \) acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\). Copy content Toggle raw display