Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [980,2,Mod(97,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 980.m (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.82533939809\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | 0 | −2.10245 | − | 2.10245i | 0 | 1.53410 | + | 1.62682i | 0 | 0 | 0 | 5.84062i | 0 | ||||||||||||||
97.2 | 0 | −1.62809 | − | 1.62809i | 0 | 1.99300 | + | 1.01388i | 0 | 0 | 0 | 2.30136i | 0 | ||||||||||||||
97.3 | 0 | −1.42564 | − | 1.42564i | 0 | −2.11555 | + | 0.724199i | 0 | 0 | 0 | 1.06489i | 0 | ||||||||||||||
97.4 | 0 | −0.650442 | − | 0.650442i | 0 | 2.05263 | − | 0.886973i | 0 | 0 | 0 | − | 2.15385i | 0 | |||||||||||||
97.5 | 0 | −0.562914 | − | 0.562914i | 0 | −1.87811 | − | 1.21356i | 0 | 0 | 0 | − | 2.36626i | 0 | |||||||||||||
97.6 | 0 | −0.395749 | − | 0.395749i | 0 | 0.677040 | − | 2.13111i | 0 | 0 | 0 | − | 2.68677i | 0 | |||||||||||||
97.7 | 0 | 0.395749 | + | 0.395749i | 0 | −0.677040 | + | 2.13111i | 0 | 0 | 0 | − | 2.68677i | 0 | |||||||||||||
97.8 | 0 | 0.562914 | + | 0.562914i | 0 | 1.87811 | + | 1.21356i | 0 | 0 | 0 | − | 2.36626i | 0 | |||||||||||||
97.9 | 0 | 0.650442 | + | 0.650442i | 0 | −2.05263 | + | 0.886973i | 0 | 0 | 0 | − | 2.15385i | 0 | |||||||||||||
97.10 | 0 | 1.42564 | + | 1.42564i | 0 | 2.11555 | − | 0.724199i | 0 | 0 | 0 | 1.06489i | 0 | ||||||||||||||
97.11 | 0 | 1.62809 | + | 1.62809i | 0 | −1.99300 | − | 1.01388i | 0 | 0 | 0 | 2.30136i | 0 | ||||||||||||||
97.12 | 0 | 2.10245 | + | 2.10245i | 0 | −1.53410 | − | 1.62682i | 0 | 0 | 0 | 5.84062i | 0 | ||||||||||||||
293.1 | 0 | −2.10245 | + | 2.10245i | 0 | 1.53410 | − | 1.62682i | 0 | 0 | 0 | − | 5.84062i | 0 | |||||||||||||
293.2 | 0 | −1.62809 | + | 1.62809i | 0 | 1.99300 | − | 1.01388i | 0 | 0 | 0 | − | 2.30136i | 0 | |||||||||||||
293.3 | 0 | −1.42564 | + | 1.42564i | 0 | −2.11555 | − | 0.724199i | 0 | 0 | 0 | − | 1.06489i | 0 | |||||||||||||
293.4 | 0 | −0.650442 | + | 0.650442i | 0 | 2.05263 | + | 0.886973i | 0 | 0 | 0 | 2.15385i | 0 | ||||||||||||||
293.5 | 0 | −0.562914 | + | 0.562914i | 0 | −1.87811 | + | 1.21356i | 0 | 0 | 0 | 2.36626i | 0 | ||||||||||||||
293.6 | 0 | −0.395749 | + | 0.395749i | 0 | 0.677040 | + | 2.13111i | 0 | 0 | 0 | 2.68677i | 0 | ||||||||||||||
293.7 | 0 | 0.395749 | − | 0.395749i | 0 | −0.677040 | − | 2.13111i | 0 | 0 | 0 | 2.68677i | 0 | ||||||||||||||
293.8 | 0 | 0.562914 | − | 0.562914i | 0 | 1.87811 | − | 1.21356i | 0 | 0 | 0 | 2.36626i | 0 | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
7.b | odd | 2 | 1 | inner |
35.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.2.m.b | ✓ | 24 |
5.c | odd | 4 | 1 | inner | 980.2.m.b | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 980.2.m.b | ✓ | 24 |
7.c | even | 3 | 2 | 980.2.v.c | 48 | ||
7.d | odd | 6 | 2 | 980.2.v.c | 48 | ||
35.f | even | 4 | 1 | inner | 980.2.m.b | ✓ | 24 |
35.k | even | 12 | 2 | 980.2.v.c | 48 | ||
35.l | odd | 12 | 2 | 980.2.v.c | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
980.2.m.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
980.2.m.b | ✓ | 24 | 5.c | odd | 4 | 1 | inner |
980.2.m.b | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
980.2.m.b | ✓ | 24 | 35.f | even | 4 | 1 | inner |
980.2.v.c | 48 | 7.c | even | 3 | 2 | ||
980.2.v.c | 48 | 7.d | odd | 6 | 2 | ||
980.2.v.c | 48 | 35.k | even | 12 | 2 | ||
980.2.v.c | 48 | 35.l | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 124T_{3}^{20} + 4102T_{3}^{16} + 41148T_{3}^{12} + 45697T_{3}^{8} + 14528T_{3}^{4} + 1024 \) acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\).