Properties

Label 980.2.m.b.97.7
Level $980$
Weight $2$
Character 980.97
Analytic conductor $7.825$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(97,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 97.7
Character \(\chi\) \(=\) 980.97
Dual form 980.2.m.b.293.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.395749 + 0.395749i) q^{3} +(-0.677040 + 2.13111i) q^{5} -2.68677i q^{9} -4.99721 q^{11} +(-0.796463 - 0.796463i) q^{13} +(-1.11132 + 0.575445i) q^{15} +(-3.90618 + 3.90618i) q^{17} +2.20585 q^{19} +(-5.18498 + 5.18498i) q^{23} +(-4.08323 - 2.88569i) q^{25} +(2.25053 - 2.25053i) q^{27} +2.10975i q^{29} +4.03440i q^{31} +(-1.97764 - 1.97764i) q^{33} +(-6.75885 - 6.75885i) q^{37} -0.630399i q^{39} -9.32264i q^{41} +(3.09875 - 3.09875i) q^{43} +(5.72579 + 1.81905i) q^{45} +(-2.13508 + 2.13508i) q^{47} -3.09173 q^{51} +(-2.55035 + 2.55035i) q^{53} +(3.38331 - 10.6496i) q^{55} +(0.872963 + 0.872963i) q^{57} -9.47353 q^{59} +1.73263i q^{61} +(2.23659 - 1.15811i) q^{65} +(-7.46291 - 7.46291i) q^{67} -4.10390 q^{69} -2.88392 q^{71} +(7.64924 + 7.64924i) q^{73} +(-0.473927 - 2.75794i) q^{75} +3.83408i q^{79} -6.27901 q^{81} +(11.9932 + 11.9932i) q^{83} +(-5.67984 - 10.9691i) q^{85} +(-0.834929 + 0.834929i) q^{87} -3.63809 q^{89} +(-1.59661 + 1.59661i) q^{93} +(-1.49345 + 4.70091i) q^{95} +(-8.67691 + 8.67691i) q^{97} +13.4263i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{11} - 48 q^{23} + 32 q^{25} - 32 q^{37} + 16 q^{43} + 48 q^{51} - 24 q^{53} + 64 q^{65} - 32 q^{67} + 8 q^{81} - 64 q^{85} - 96 q^{93} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.395749 + 0.395749i 0.228486 + 0.228486i 0.812060 0.583574i \(-0.198346\pi\)
−0.583574 + 0.812060i \(0.698346\pi\)
\(4\) 0 0
\(5\) −0.677040 + 2.13111i −0.302781 + 0.953060i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.68677i 0.895589i
\(10\) 0 0
\(11\) −4.99721 −1.50671 −0.753357 0.657612i \(-0.771567\pi\)
−0.753357 + 0.657612i \(0.771567\pi\)
\(12\) 0 0
\(13\) −0.796463 0.796463i −0.220899 0.220899i 0.587978 0.808877i \(-0.299924\pi\)
−0.808877 + 0.587978i \(0.799924\pi\)
\(14\) 0 0
\(15\) −1.11132 + 0.575445i −0.286942 + 0.148579i
\(16\) 0 0
\(17\) −3.90618 + 3.90618i −0.947387 + 0.947387i −0.998683 0.0512963i \(-0.983665\pi\)
0.0512963 + 0.998683i \(0.483665\pi\)
\(18\) 0 0
\(19\) 2.20585 0.506057 0.253029 0.967459i \(-0.418573\pi\)
0.253029 + 0.967459i \(0.418573\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.18498 + 5.18498i −1.08114 + 1.08114i −0.0847395 + 0.996403i \(0.527006\pi\)
−0.996403 + 0.0847395i \(0.972994\pi\)
\(24\) 0 0
\(25\) −4.08323 2.88569i −0.816647 0.577138i
\(26\) 0 0
\(27\) 2.25053 2.25053i 0.433115 0.433115i
\(28\) 0 0
\(29\) 2.10975i 0.391770i 0.980627 + 0.195885i \(0.0627579\pi\)
−0.980627 + 0.195885i \(0.937242\pi\)
\(30\) 0 0
\(31\) 4.03440i 0.724600i 0.932061 + 0.362300i \(0.118008\pi\)
−0.932061 + 0.362300i \(0.881992\pi\)
\(32\) 0 0
\(33\) −1.97764 1.97764i −0.344263 0.344263i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.75885 6.75885i −1.11115 1.11115i −0.992995 0.118152i \(-0.962303\pi\)
−0.118152 0.992995i \(-0.537697\pi\)
\(38\) 0 0
\(39\) 0.630399i 0.100945i
\(40\) 0 0
\(41\) 9.32264i 1.45595i −0.685603 0.727976i \(-0.740461\pi\)
0.685603 0.727976i \(-0.259539\pi\)
\(42\) 0 0
\(43\) 3.09875 3.09875i 0.472555 0.472555i −0.430185 0.902741i \(-0.641552\pi\)
0.902741 + 0.430185i \(0.141552\pi\)
\(44\) 0 0
\(45\) 5.72579 + 1.81905i 0.853550 + 0.271168i
\(46\) 0 0
\(47\) −2.13508 + 2.13508i −0.311434 + 0.311434i −0.845465 0.534031i \(-0.820677\pi\)
0.534031 + 0.845465i \(0.320677\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.09173 −0.432929
\(52\) 0 0
\(53\) −2.55035 + 2.55035i −0.350317 + 0.350317i −0.860228 0.509910i \(-0.829679\pi\)
0.509910 + 0.860228i \(0.329679\pi\)
\(54\) 0 0
\(55\) 3.38331 10.6496i 0.456205 1.43599i
\(56\) 0 0
\(57\) 0.872963 + 0.872963i 0.115627 + 0.115627i
\(58\) 0 0
\(59\) −9.47353 −1.23335 −0.616674 0.787218i \(-0.711520\pi\)
−0.616674 + 0.787218i \(0.711520\pi\)
\(60\) 0 0
\(61\) 1.73263i 0.221840i 0.993829 + 0.110920i \(0.0353797\pi\)
−0.993829 + 0.110920i \(0.964620\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.23659 1.15811i 0.277414 0.143646i
\(66\) 0 0
\(67\) −7.46291 7.46291i −0.911739 0.911739i 0.0846700 0.996409i \(-0.473016\pi\)
−0.996409 + 0.0846700i \(0.973016\pi\)
\(68\) 0 0
\(69\) −4.10390 −0.494051
\(70\) 0 0
\(71\) −2.88392 −0.342258 −0.171129 0.985249i \(-0.554741\pi\)
−0.171129 + 0.985249i \(0.554741\pi\)
\(72\) 0 0
\(73\) 7.64924 + 7.64924i 0.895276 + 0.895276i 0.995014 0.0997378i \(-0.0318004\pi\)
−0.0997378 + 0.995014i \(0.531800\pi\)
\(74\) 0 0
\(75\) −0.473927 2.75794i −0.0547244 0.318460i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.83408i 0.431368i 0.976463 + 0.215684i \(0.0691981\pi\)
−0.976463 + 0.215684i \(0.930802\pi\)
\(80\) 0 0
\(81\) −6.27901 −0.697668
\(82\) 0 0
\(83\) 11.9932 + 11.9932i 1.31642 + 1.31642i 0.916588 + 0.399834i \(0.130932\pi\)
0.399834 + 0.916588i \(0.369068\pi\)
\(84\) 0 0
\(85\) −5.67984 10.9691i −0.616066 1.18977i
\(86\) 0 0
\(87\) −0.834929 + 0.834929i −0.0895138 + 0.0895138i
\(88\) 0 0
\(89\) −3.63809 −0.385637 −0.192819 0.981234i \(-0.561763\pi\)
−0.192819 + 0.981234i \(0.561763\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.59661 + 1.59661i −0.165561 + 0.165561i
\(94\) 0 0
\(95\) −1.49345 + 4.70091i −0.153225 + 0.482303i
\(96\) 0 0
\(97\) −8.67691 + 8.67691i −0.881007 + 0.881007i −0.993637 0.112630i \(-0.964072\pi\)
0.112630 + 0.993637i \(0.464072\pi\)
\(98\) 0 0
\(99\) 13.4263i 1.34940i
\(100\) 0 0
\(101\) 1.96701i 0.195724i −0.995200 0.0978622i \(-0.968800\pi\)
0.995200 0.0978622i \(-0.0312004\pi\)
\(102\) 0 0
\(103\) 12.7499 + 12.7499i 1.25629 + 1.25629i 0.952852 + 0.303435i \(0.0981334\pi\)
0.303435 + 0.952852i \(0.401867\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.36258 + 1.36258i 0.131725 + 0.131725i 0.769895 0.638170i \(-0.220308\pi\)
−0.638170 + 0.769895i \(0.720308\pi\)
\(108\) 0 0
\(109\) 1.00319i 0.0960880i −0.998845 0.0480440i \(-0.984701\pi\)
0.998845 0.0480440i \(-0.0152988\pi\)
\(110\) 0 0
\(111\) 5.34961i 0.507763i
\(112\) 0 0
\(113\) 5.97014 5.97014i 0.561624 0.561624i −0.368145 0.929768i \(-0.620007\pi\)
0.929768 + 0.368145i \(0.120007\pi\)
\(114\) 0 0
\(115\) −7.53931 14.5602i −0.703044 1.35774i
\(116\) 0 0
\(117\) −2.13991 + 2.13991i −0.197835 + 0.197835i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 13.9721 1.27019
\(122\) 0 0
\(123\) 3.68942 3.68942i 0.332664 0.332664i
\(124\) 0 0
\(125\) 8.91422 6.74808i 0.797312 0.603567i
\(126\) 0 0
\(127\) 10.0097 + 10.0097i 0.888220 + 0.888220i 0.994352 0.106132i \(-0.0338465\pi\)
−0.106132 + 0.994352i \(0.533847\pi\)
\(128\) 0 0
\(129\) 2.45266 0.215944
\(130\) 0 0
\(131\) 4.19185i 0.366244i −0.983090 0.183122i \(-0.941380\pi\)
0.983090 0.183122i \(-0.0586203\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.27242 + 6.31982i 0.281645 + 0.543923i
\(136\) 0 0
\(137\) 9.57846 + 9.57846i 0.818343 + 0.818343i 0.985868 0.167525i \(-0.0535775\pi\)
−0.167525 + 0.985868i \(0.553578\pi\)
\(138\) 0 0
\(139\) −17.9770 −1.52479 −0.762393 0.647114i \(-0.775976\pi\)
−0.762393 + 0.647114i \(0.775976\pi\)
\(140\) 0 0
\(141\) −1.68991 −0.142316
\(142\) 0 0
\(143\) 3.98009 + 3.98009i 0.332832 + 0.332832i
\(144\) 0 0
\(145\) −4.49610 1.42838i −0.373380 0.118621i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.0256i 1.72249i −0.508192 0.861244i \(-0.669686\pi\)
0.508192 0.861244i \(-0.330314\pi\)
\(150\) 0 0
\(151\) 18.3554 1.49374 0.746869 0.664971i \(-0.231556\pi\)
0.746869 + 0.664971i \(0.231556\pi\)
\(152\) 0 0
\(153\) 10.4950 + 10.4950i 0.848469 + 0.848469i
\(154\) 0 0
\(155\) −8.59775 2.73145i −0.690588 0.219396i
\(156\) 0 0
\(157\) 1.56986 1.56986i 0.125288 0.125288i −0.641682 0.766970i \(-0.721763\pi\)
0.766970 + 0.641682i \(0.221763\pi\)
\(158\) 0 0
\(159\) −2.01860 −0.160085
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.9078 + 10.9078i −0.854367 + 0.854367i −0.990668 0.136300i \(-0.956479\pi\)
0.136300 + 0.990668i \(0.456479\pi\)
\(164\) 0 0
\(165\) 5.55350 2.87562i 0.432339 0.223867i
\(166\) 0 0
\(167\) −13.8034 + 13.8034i −1.06814 + 1.06814i −0.0706395 + 0.997502i \(0.522504\pi\)
−0.997502 + 0.0706395i \(0.977496\pi\)
\(168\) 0 0
\(169\) 11.7313i 0.902407i
\(170\) 0 0
\(171\) 5.92661i 0.453219i
\(172\) 0 0
\(173\) −16.1755 16.1755i −1.22980 1.22980i −0.964039 0.265759i \(-0.914377\pi\)
−0.265759 0.964039i \(-0.585623\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.74914 3.74914i −0.281802 0.281802i
\(178\) 0 0
\(179\) 14.1759i 1.05955i 0.848137 + 0.529777i \(0.177724\pi\)
−0.848137 + 0.529777i \(0.822276\pi\)
\(180\) 0 0
\(181\) 6.24223i 0.463981i 0.972718 + 0.231991i \(0.0745239\pi\)
−0.972718 + 0.231991i \(0.925476\pi\)
\(182\) 0 0
\(183\) −0.685685 + 0.685685i −0.0506873 + 0.0506873i
\(184\) 0 0
\(185\) 18.9798 9.82782i 1.39543 0.722556i
\(186\) 0 0
\(187\) 19.5200 19.5200i 1.42744 1.42744i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.5432 0.907593 0.453797 0.891105i \(-0.350069\pi\)
0.453797 + 0.891105i \(0.350069\pi\)
\(192\) 0 0
\(193\) 14.7971 14.7971i 1.06512 1.06512i 0.0673890 0.997727i \(-0.478533\pi\)
0.997727 0.0673890i \(-0.0214669\pi\)
\(194\) 0 0
\(195\) 1.34345 + 0.426805i 0.0962062 + 0.0305641i
\(196\) 0 0
\(197\) 1.81646 + 1.81646i 0.129417 + 0.129417i 0.768848 0.639431i \(-0.220830\pi\)
−0.639431 + 0.768848i \(0.720830\pi\)
\(198\) 0 0
\(199\) −20.1267 −1.42675 −0.713373 0.700784i \(-0.752834\pi\)
−0.713373 + 0.700784i \(0.752834\pi\)
\(200\) 0 0
\(201\) 5.90687i 0.416639i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 19.8675 + 6.31180i 1.38761 + 0.440835i
\(206\) 0 0
\(207\) 13.9308 + 13.9308i 0.968259 + 0.968259i
\(208\) 0 0
\(209\) −11.0231 −0.762484
\(210\) 0 0
\(211\) −16.2260 −1.11705 −0.558523 0.829489i \(-0.688632\pi\)
−0.558523 + 0.829489i \(0.688632\pi\)
\(212\) 0 0
\(213\) −1.14131 1.14131i −0.0782010 0.0782010i
\(214\) 0 0
\(215\) 4.50580 + 8.70175i 0.307293 + 0.593455i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.05436i 0.409115i
\(220\) 0 0
\(221\) 6.22225 0.418554
\(222\) 0 0
\(223\) 7.64230 + 7.64230i 0.511766 + 0.511766i 0.915067 0.403301i \(-0.132137\pi\)
−0.403301 + 0.915067i \(0.632137\pi\)
\(224\) 0 0
\(225\) −7.75317 + 10.9707i −0.516878 + 0.731380i
\(226\) 0 0
\(227\) −0.222004 + 0.222004i −0.0147349 + 0.0147349i −0.714436 0.699701i \(-0.753317\pi\)
0.699701 + 0.714436i \(0.253317\pi\)
\(228\) 0 0
\(229\) 16.9987 1.12330 0.561652 0.827374i \(-0.310166\pi\)
0.561652 + 0.827374i \(0.310166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.12070 + 4.12070i −0.269956 + 0.269956i −0.829082 0.559126i \(-0.811137\pi\)
0.559126 + 0.829082i \(0.311137\pi\)
\(234\) 0 0
\(235\) −3.10456 5.99563i −0.202519 0.391112i
\(236\) 0 0
\(237\) −1.51733 + 1.51733i −0.0985614 + 0.0985614i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769337i \(0.279413\pi\)
−0.638844 + 0.769337i \(0.720587\pi\)
\(240\) 0 0
\(241\) 27.8142i 1.79167i −0.444386 0.895835i \(-0.646578\pi\)
0.444386 0.895835i \(-0.353422\pi\)
\(242\) 0 0
\(243\) −9.23650 9.23650i −0.592522 0.592522i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.75688 1.75688i −0.111788 0.111788i
\(248\) 0 0
\(249\) 9.49256i 0.601567i
\(250\) 0 0
\(251\) 10.1517i 0.640772i 0.947287 + 0.320386i \(0.103813\pi\)
−0.947287 + 0.320386i \(0.896187\pi\)
\(252\) 0 0
\(253\) 25.9104 25.9104i 1.62897 1.62897i
\(254\) 0 0
\(255\) 2.09322 6.58881i 0.131083 0.412607i
\(256\) 0 0
\(257\) −15.5762 + 15.5762i −0.971615 + 0.971615i −0.999608 0.0279932i \(-0.991088\pi\)
0.0279932 + 0.999608i \(0.491088\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.66839 0.350865
\(262\) 0 0
\(263\) 10.1848 10.1848i 0.628024 0.628024i −0.319546 0.947571i \(-0.603531\pi\)
0.947571 + 0.319546i \(0.103531\pi\)
\(264\) 0 0
\(265\) −3.70838 7.16176i −0.227804 0.439943i
\(266\) 0 0
\(267\) −1.43977 1.43977i −0.0881126 0.0881126i
\(268\) 0 0
\(269\) 12.2530 0.747078 0.373539 0.927615i \(-0.378144\pi\)
0.373539 + 0.927615i \(0.378144\pi\)
\(270\) 0 0
\(271\) 21.0736i 1.28013i 0.768320 + 0.640066i \(0.221093\pi\)
−0.768320 + 0.640066i \(0.778907\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.4048 + 14.4204i 1.23045 + 0.869582i
\(276\) 0 0
\(277\) 12.0501 + 12.0501i 0.724018 + 0.724018i 0.969421 0.245404i \(-0.0789205\pi\)
−0.245404 + 0.969421i \(0.578920\pi\)
\(278\) 0 0
\(279\) 10.8395 0.648944
\(280\) 0 0
\(281\) 5.27669 0.314781 0.157390 0.987536i \(-0.449692\pi\)
0.157390 + 0.987536i \(0.449692\pi\)
\(282\) 0 0
\(283\) 8.22426 + 8.22426i 0.488882 + 0.488882i 0.907953 0.419072i \(-0.137644\pi\)
−0.419072 + 0.907953i \(0.637644\pi\)
\(284\) 0 0
\(285\) −2.45141 + 1.26935i −0.145209 + 0.0751896i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.5164i 0.795085i
\(290\) 0 0
\(291\) −6.86775 −0.402595
\(292\) 0 0
\(293\) 11.9914 + 11.9914i 0.700547 + 0.700547i 0.964528 0.263981i \(-0.0850357\pi\)
−0.263981 + 0.964528i \(0.585036\pi\)
\(294\) 0 0
\(295\) 6.41396 20.1891i 0.373435 1.17546i
\(296\) 0 0
\(297\) −11.2464 + 11.2464i −0.652580 + 0.652580i
\(298\) 0 0
\(299\) 8.25929 0.477647
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.778440 0.778440i 0.0447202 0.0447202i
\(304\) 0 0
\(305\) −3.69241 1.17306i −0.211427 0.0671690i
\(306\) 0 0
\(307\) −11.2784 + 11.2784i −0.643691 + 0.643691i −0.951461 0.307770i \(-0.900417\pi\)
0.307770 + 0.951461i \(0.400417\pi\)
\(308\) 0 0
\(309\) 10.0915i 0.574087i
\(310\) 0 0
\(311\) 17.6641i 1.00164i −0.865551 0.500821i \(-0.833032\pi\)
0.865551 0.500821i \(-0.166968\pi\)
\(312\) 0 0
\(313\) 3.71255 + 3.71255i 0.209846 + 0.209846i 0.804202 0.594356i \(-0.202593\pi\)
−0.594356 + 0.804202i \(0.702593\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.66271 + 5.66271i 0.318050 + 0.318050i 0.848018 0.529968i \(-0.177796\pi\)
−0.529968 + 0.848018i \(0.677796\pi\)
\(318\) 0 0
\(319\) 10.5428i 0.590286i
\(320\) 0 0
\(321\) 1.07848i 0.0601947i
\(322\) 0 0
\(323\) −8.61645 + 8.61645i −0.479432 + 0.479432i
\(324\) 0 0
\(325\) 0.953801 + 5.55049i 0.0529074 + 0.307886i
\(326\) 0 0
\(327\) 0.397010 0.397010i 0.0219547 0.0219547i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.20974 0.121458 0.0607292 0.998154i \(-0.480657\pi\)
0.0607292 + 0.998154i \(0.480657\pi\)
\(332\) 0 0
\(333\) −18.1594 + 18.1594i −0.995131 + 0.995131i
\(334\) 0 0
\(335\) 20.9569 10.8516i 1.14500 0.592884i
\(336\) 0 0
\(337\) −13.9395 13.9395i −0.759331 0.759331i 0.216870 0.976201i \(-0.430415\pi\)
−0.976201 + 0.216870i \(0.930415\pi\)
\(338\) 0 0
\(339\) 4.72535 0.256646
\(340\) 0 0
\(341\) 20.1608i 1.09177i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.77850 8.74584i 0.149590 0.470860i
\(346\) 0 0
\(347\) −12.5707 12.5707i −0.674833 0.674833i 0.283993 0.958826i \(-0.408341\pi\)
−0.958826 + 0.283993i \(0.908341\pi\)
\(348\) 0 0
\(349\) −34.5979 −1.85198 −0.925992 0.377544i \(-0.876769\pi\)
−0.925992 + 0.377544i \(0.876769\pi\)
\(350\) 0 0
\(351\) −3.58493 −0.191349
\(352\) 0 0
\(353\) 9.05779 + 9.05779i 0.482098 + 0.482098i 0.905801 0.423703i \(-0.139270\pi\)
−0.423703 + 0.905801i \(0.639270\pi\)
\(354\) 0 0
\(355\) 1.95253 6.14594i 0.103629 0.326192i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.80249i 0.306244i −0.988207 0.153122i \(-0.951067\pi\)
0.988207 0.153122i \(-0.0489327\pi\)
\(360\) 0 0
\(361\) −14.1342 −0.743906
\(362\) 0 0
\(363\) 5.52943 + 5.52943i 0.290220 + 0.290220i
\(364\) 0 0
\(365\) −21.4802 + 11.1225i −1.12432 + 0.582179i
\(366\) 0 0
\(367\) −0.810316 + 0.810316i −0.0422982 + 0.0422982i −0.727940 0.685641i \(-0.759522\pi\)
0.685641 + 0.727940i \(0.259522\pi\)
\(368\) 0 0
\(369\) −25.0477 −1.30393
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.87296 + 1.87296i −0.0969784 + 0.0969784i −0.753931 0.656953i \(-0.771845\pi\)
0.656953 + 0.753931i \(0.271845\pi\)
\(374\) 0 0
\(375\) 6.19834 + 0.857247i 0.320081 + 0.0442681i
\(376\) 0 0
\(377\) 1.68034 1.68034i 0.0865417 0.0865417i
\(378\) 0 0
\(379\) 23.1300i 1.18811i −0.804426 0.594053i \(-0.797527\pi\)
0.804426 0.594053i \(-0.202473\pi\)
\(380\) 0 0
\(381\) 7.92268i 0.405891i
\(382\) 0 0
\(383\) 6.24026 + 6.24026i 0.318862 + 0.318862i 0.848330 0.529468i \(-0.177608\pi\)
−0.529468 + 0.848330i \(0.677608\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.32562 8.32562i −0.423215 0.423215i
\(388\) 0 0
\(389\) 10.5299i 0.533887i −0.963712 0.266943i \(-0.913986\pi\)
0.963712 0.266943i \(-0.0860137\pi\)
\(390\) 0 0
\(391\) 40.5069i 2.04852i
\(392\) 0 0
\(393\) 1.65892 1.65892i 0.0836814 0.0836814i
\(394\) 0 0
\(395\) −8.17084 2.59583i −0.411119 0.130610i
\(396\) 0 0
\(397\) 3.28192 3.28192i 0.164715 0.164715i −0.619937 0.784652i \(-0.712842\pi\)
0.784652 + 0.619937i \(0.212842\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −33.9036 −1.69306 −0.846532 0.532338i \(-0.821314\pi\)
−0.846532 + 0.532338i \(0.821314\pi\)
\(402\) 0 0
\(403\) 3.21325 3.21325i 0.160064 0.160064i
\(404\) 0 0
\(405\) 4.25114 13.3812i 0.211241 0.664919i
\(406\) 0 0
\(407\) 33.7754 + 33.7754i 1.67418 + 1.67418i
\(408\) 0 0
\(409\) −19.5864 −0.968485 −0.484243 0.874934i \(-0.660905\pi\)
−0.484243 + 0.874934i \(0.660905\pi\)
\(410\) 0 0
\(411\) 7.58132i 0.373959i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −33.6786 + 17.4389i −1.65322 + 0.856041i
\(416\) 0 0
\(417\) −7.11436 7.11436i −0.348392 0.348392i
\(418\) 0 0
\(419\) 16.1121 0.787126 0.393563 0.919298i \(-0.371242\pi\)
0.393563 + 0.919298i \(0.371242\pi\)
\(420\) 0 0
\(421\) 8.54870 0.416638 0.208319 0.978061i \(-0.433201\pi\)
0.208319 + 0.978061i \(0.433201\pi\)
\(422\) 0 0
\(423\) 5.73647 + 5.73647i 0.278917 + 0.278917i
\(424\) 0 0
\(425\) 27.2218 4.67783i 1.32045 0.226908i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.15023i 0.152095i
\(430\) 0 0
\(431\) 8.88314 0.427886 0.213943 0.976846i \(-0.431369\pi\)
0.213943 + 0.976846i \(0.431369\pi\)
\(432\) 0 0
\(433\) 2.78047 + 2.78047i 0.133621 + 0.133621i 0.770754 0.637133i \(-0.219880\pi\)
−0.637133 + 0.770754i \(0.719880\pi\)
\(434\) 0 0
\(435\) −1.21404 2.34460i −0.0582089 0.112415i
\(436\) 0 0
\(437\) −11.4373 + 11.4373i −0.547120 + 0.547120i
\(438\) 0 0
\(439\) −17.2101 −0.821393 −0.410696 0.911772i \(-0.634714\pi\)
−0.410696 + 0.911772i \(0.634714\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.75852 + 8.75852i −0.416130 + 0.416130i −0.883867 0.467738i \(-0.845069\pi\)
0.467738 + 0.883867i \(0.345069\pi\)
\(444\) 0 0
\(445\) 2.46314 7.75317i 0.116764 0.367535i
\(446\) 0 0
\(447\) 8.32087 8.32087i 0.393564 0.393564i
\(448\) 0 0
\(449\) 17.7855i 0.839347i 0.907675 + 0.419674i \(0.137855\pi\)
−0.907675 + 0.419674i \(0.862145\pi\)
\(450\) 0 0
\(451\) 46.5871i 2.19370i
\(452\) 0 0
\(453\) 7.26411 + 7.26411i 0.341298 + 0.341298i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.09360 + 2.09360i 0.0979346 + 0.0979346i 0.754377 0.656442i \(-0.227939\pi\)
−0.656442 + 0.754377i \(0.727939\pi\)
\(458\) 0 0
\(459\) 17.5819i 0.820655i
\(460\) 0 0
\(461\) 19.7304i 0.918938i −0.888194 0.459469i \(-0.848040\pi\)
0.888194 0.459469i \(-0.151960\pi\)
\(462\) 0 0
\(463\) 15.7963 15.7963i 0.734115 0.734115i −0.237317 0.971432i \(-0.576268\pi\)
0.971432 + 0.237317i \(0.0762680\pi\)
\(464\) 0 0
\(465\) −2.32158 4.48352i −0.107661 0.207918i
\(466\) 0 0
\(467\) 2.02017 2.02017i 0.0934822 0.0934822i −0.658819 0.752301i \(-0.728944\pi\)
0.752301 + 0.658819i \(0.228944\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.24254 0.0572531
\(472\) 0 0
\(473\) −15.4851 + 15.4851i −0.712006 + 0.712006i
\(474\) 0 0
\(475\) −9.00701 6.36540i −0.413270 0.292065i
\(476\) 0 0
\(477\) 6.85219 + 6.85219i 0.313740 + 0.313740i
\(478\) 0 0
\(479\) −0.109514 −0.00500380 −0.00250190 0.999997i \(-0.500796\pi\)
−0.00250190 + 0.999997i \(0.500796\pi\)
\(480\) 0 0
\(481\) 10.7663i 0.490903i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.6168 24.3660i −0.572900 1.10640i
\(486\) 0 0
\(487\) −22.3471 22.3471i −1.01264 1.01264i −0.999919 0.0127248i \(-0.995949\pi\)
−0.0127248 0.999919i \(-0.504051\pi\)
\(488\) 0 0
\(489\) −8.63352 −0.390421
\(490\) 0 0
\(491\) −36.7012 −1.65630 −0.828152 0.560504i \(-0.810607\pi\)
−0.828152 + 0.560504i \(0.810607\pi\)
\(492\) 0 0
\(493\) −8.24104 8.24104i −0.371158 0.371158i
\(494\) 0 0
\(495\) −28.6129 9.09016i −1.28606 0.408572i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 20.6792i 0.925727i −0.886430 0.462863i \(-0.846822\pi\)
0.886430 0.462863i \(-0.153178\pi\)
\(500\) 0 0
\(501\) −10.9254 −0.488110
\(502\) 0 0
\(503\) −19.8290 19.8290i −0.884133 0.884133i 0.109819 0.993952i \(-0.464973\pi\)
−0.993952 + 0.109819i \(0.964973\pi\)
\(504\) 0 0
\(505\) 4.19190 + 1.33174i 0.186537 + 0.0592617i
\(506\) 0 0
\(507\) 4.64264 4.64264i 0.206187 0.206187i
\(508\) 0 0
\(509\) −1.60862 −0.0713008 −0.0356504 0.999364i \(-0.511350\pi\)
−0.0356504 + 0.999364i \(0.511350\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.96434 4.96434i 0.219181 0.219181i
\(514\) 0 0
\(515\) −35.8036 + 18.5392i −1.57770 + 0.816937i
\(516\) 0 0
\(517\) 10.6695 10.6695i 0.469242 0.469242i
\(518\) 0 0
\(519\) 12.8028i 0.561983i
\(520\) 0 0
\(521\) 14.1016i 0.617801i 0.951094 + 0.308901i \(0.0999610\pi\)
−0.951094 + 0.308901i \(0.900039\pi\)
\(522\) 0 0
\(523\) 6.28279 + 6.28279i 0.274727 + 0.274727i 0.831000 0.556273i \(-0.187769\pi\)
−0.556273 + 0.831000i \(0.687769\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.7591 15.7591i −0.686477 0.686477i
\(528\) 0 0
\(529\) 30.7680i 1.33774i
\(530\) 0 0
\(531\) 25.4532i 1.10457i
\(532\) 0 0
\(533\) −7.42514 + 7.42514i −0.321618 + 0.321618i
\(534\) 0 0
\(535\) −3.82632 + 1.98128i −0.165426 + 0.0856582i
\(536\) 0 0
\(537\) −5.61008 + 5.61008i −0.242093 + 0.242093i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.2895 −0.485372 −0.242686 0.970105i \(-0.578028\pi\)
−0.242686 + 0.970105i \(0.578028\pi\)
\(542\) 0 0
\(543\) −2.47036 + 2.47036i −0.106013 + 0.106013i
\(544\) 0 0
\(545\) 2.13790 + 0.679198i 0.0915776 + 0.0290937i
\(546\) 0 0
\(547\) −17.2149 17.2149i −0.736057 0.736057i 0.235756 0.971812i \(-0.424243\pi\)
−0.971812 + 0.235756i \(0.924243\pi\)
\(548\) 0 0
\(549\) 4.65516 0.198677
\(550\) 0 0
\(551\) 4.65379i 0.198258i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 11.4006 + 3.62190i 0.483928 + 0.153741i
\(556\) 0 0
\(557\) −16.2578 16.2578i −0.688865 0.688865i 0.273116 0.961981i \(-0.411946\pi\)
−0.961981 + 0.273116i \(0.911946\pi\)
\(558\) 0 0
\(559\) −4.93609 −0.208774
\(560\) 0 0
\(561\) 15.4500 0.652300
\(562\) 0 0
\(563\) 21.7262 + 21.7262i 0.915649 + 0.915649i 0.996709 0.0810603i \(-0.0258306\pi\)
−0.0810603 + 0.996709i \(0.525831\pi\)
\(564\) 0 0
\(565\) 8.68099 + 16.7650i 0.365212 + 0.705310i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0076i 0.754919i 0.926026 + 0.377460i \(0.123202\pi\)
−0.926026 + 0.377460i \(0.876798\pi\)
\(570\) 0 0
\(571\) −36.9558 −1.54655 −0.773276 0.634069i \(-0.781384\pi\)
−0.773276 + 0.634069i \(0.781384\pi\)
\(572\) 0 0
\(573\) 4.96395 + 4.96395i 0.207372 + 0.207372i
\(574\) 0 0
\(575\) 36.1337 6.20925i 1.50688 0.258944i
\(576\) 0 0
\(577\) −14.7610 + 14.7610i −0.614507 + 0.614507i −0.944117 0.329610i \(-0.893083\pi\)
0.329610 + 0.944117i \(0.393083\pi\)
\(578\) 0 0
\(579\) 11.7118 0.486727
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.7446 12.7446i 0.527828 0.527828i
\(584\) 0 0
\(585\) −3.11157 6.00918i −0.128648 0.248449i
\(586\) 0 0
\(587\) −2.20587 + 2.20587i −0.0910459 + 0.0910459i −0.751163 0.660117i \(-0.770507\pi\)
0.660117 + 0.751163i \(0.270507\pi\)
\(588\) 0 0
\(589\) 8.89930i 0.366689i
\(590\) 0 0
\(591\) 1.43772i 0.0591400i
\(592\) 0 0
\(593\) −8.98961 8.98961i −0.369159 0.369159i 0.498012 0.867170i \(-0.334064\pi\)
−0.867170 + 0.498012i \(0.834064\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −7.96513 7.96513i −0.325991 0.325991i
\(598\) 0 0
\(599\) 23.3467i 0.953920i 0.878925 + 0.476960i \(0.158261\pi\)
−0.878925 + 0.476960i \(0.841739\pi\)
\(600\) 0 0
\(601\) 6.61530i 0.269844i 0.990856 + 0.134922i \(0.0430784\pi\)
−0.990856 + 0.134922i \(0.956922\pi\)
\(602\) 0 0
\(603\) −20.0511 + 20.0511i −0.816543 + 0.816543i
\(604\) 0 0
\(605\) −9.45965 + 29.7760i −0.384589 + 1.21057i
\(606\) 0 0
\(607\) 1.35864 1.35864i 0.0551455 0.0551455i −0.678996 0.734142i \(-0.737585\pi\)
0.734142 + 0.678996i \(0.237585\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.40103 0.137591
\(612\) 0 0
\(613\) 4.19764 4.19764i 0.169541 0.169541i −0.617237 0.786778i \(-0.711748\pi\)
0.786778 + 0.617237i \(0.211748\pi\)
\(614\) 0 0
\(615\) 5.36467 + 10.3604i 0.216324 + 0.417773i
\(616\) 0 0
\(617\) −6.88647 6.88647i −0.277239 0.277239i 0.554767 0.832006i \(-0.312807\pi\)
−0.832006 + 0.554767i \(0.812807\pi\)
\(618\) 0 0
\(619\) −10.3270 −0.415075 −0.207538 0.978227i \(-0.566545\pi\)
−0.207538 + 0.978227i \(0.566545\pi\)
\(620\) 0 0
\(621\) 23.3379i 0.936518i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 8.34560 + 23.5659i 0.333824 + 0.942635i
\(626\) 0 0
\(627\) −4.36238 4.36238i −0.174217 0.174217i
\(628\) 0 0
\(629\) 52.8025 2.10537
\(630\) 0 0
\(631\) 31.1964 1.24191 0.620955 0.783846i \(-0.286745\pi\)
0.620955 + 0.783846i \(0.286745\pi\)
\(632\) 0 0
\(633\) −6.42143 6.42143i −0.255229 0.255229i
\(634\) 0 0
\(635\) −28.1088 + 14.5548i −1.11546 + 0.577591i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 7.74841i 0.306522i
\(640\) 0 0
\(641\) −4.03049 −0.159195 −0.0795974 0.996827i \(-0.525363\pi\)
−0.0795974 + 0.996827i \(0.525363\pi\)
\(642\) 0 0
\(643\) −26.0807 26.0807i −1.02852 1.02852i −0.999581 0.0289406i \(-0.990787\pi\)
−0.0289406 0.999581i \(-0.509213\pi\)
\(644\) 0 0
\(645\) −1.66055 + 5.22687i −0.0653839 + 0.205808i
\(646\) 0 0
\(647\) 30.1907 30.1907i 1.18692 1.18692i 0.209003 0.977915i \(-0.432978\pi\)
0.977915 0.209003i \(-0.0670219\pi\)
\(648\) 0 0
\(649\) 47.3412 1.85830
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.5195 + 20.5195i −0.802990 + 0.802990i −0.983562 0.180572i \(-0.942205\pi\)
0.180572 + 0.983562i \(0.442205\pi\)
\(654\) 0 0
\(655\) 8.93328 + 2.83805i 0.349052 + 0.110892i
\(656\) 0 0
\(657\) 20.5517 20.5517i 0.801799 0.801799i
\(658\) 0 0
\(659\) 23.9938i 0.934665i −0.884082 0.467332i \(-0.845215\pi\)
0.884082 0.467332i \(-0.154785\pi\)
\(660\) 0 0
\(661\) 41.5368i 1.61559i −0.589461 0.807797i \(-0.700660\pi\)
0.589461 0.807797i \(-0.299340\pi\)
\(662\) 0 0
\(663\) 2.46245 + 2.46245i 0.0956336 + 0.0956336i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −10.9390 10.9390i −0.423559 0.423559i
\(668\) 0 0
\(669\) 6.04886i 0.233862i
\(670\) 0 0
\(671\) 8.65829i 0.334250i
\(672\) 0 0
\(673\) −9.10772 + 9.10772i −0.351077 + 0.351077i −0.860510 0.509433i \(-0.829855\pi\)
0.509433 + 0.860510i \(0.329855\pi\)
\(674\) 0 0
\(675\) −15.6838 + 2.69511i −0.603669 + 0.103735i
\(676\) 0 0
\(677\) −18.9702 + 18.9702i −0.729084 + 0.729084i −0.970437 0.241353i \(-0.922409\pi\)
0.241353 + 0.970437i \(0.422409\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.175715 −0.00673342
\(682\) 0 0
\(683\) 18.5664 18.5664i 0.710423 0.710423i −0.256201 0.966624i \(-0.582471\pi\)
0.966624 + 0.256201i \(0.0824709\pi\)
\(684\) 0 0
\(685\) −26.8977 + 13.9277i −1.02771 + 0.532151i
\(686\) 0 0
\(687\) 6.72720 + 6.72720i 0.256659 + 0.256659i
\(688\) 0 0
\(689\) 4.06252 0.154770
\(690\) 0 0
\(691\) 16.5327i 0.628935i −0.949268 0.314467i \(-0.898174\pi\)
0.949268 0.314467i \(-0.101826\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.1711 38.3109i 0.461677 1.45321i
\(696\) 0 0
\(697\) 36.4159 + 36.4159i 1.37935 + 1.37935i
\(698\) 0 0
\(699\) −3.26152 −0.123362
\(700\) 0 0
\(701\) −0.636652 −0.0240460 −0.0120230 0.999928i \(-0.503827\pi\)
−0.0120230 + 0.999928i \(0.503827\pi\)
\(702\) 0 0
\(703\) −14.9090 14.9090i −0.562304 0.562304i
\(704\) 0 0
\(705\) 1.14414 3.60139i 0.0430908 0.135636i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 30.2388i 1.13564i 0.823152 + 0.567821i \(0.192213\pi\)
−0.823152 + 0.567821i \(0.807787\pi\)
\(710\) 0 0
\(711\) 10.3013 0.386328
\(712\) 0 0
\(713\) −20.9183 20.9183i −0.783396 0.783396i
\(714\) 0 0
\(715\) −11.1767 + 5.78732i −0.417984 + 0.216434i
\(716\) 0 0
\(717\) −9.41380 + 9.41380i −0.351565 + 0.351565i
\(718\) 0 0
\(719\) −23.3926 −0.872397 −0.436198 0.899850i \(-0.643675\pi\)
−0.436198 + 0.899850i \(0.643675\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 11.0074 11.0074i 0.409371 0.409371i
\(724\) 0 0
\(725\) 6.08807 8.61459i 0.226105 0.319938i
\(726\) 0 0
\(727\) 16.5463 16.5463i 0.613669 0.613669i −0.330231 0.943900i \(-0.607127\pi\)
0.943900 + 0.330231i \(0.107127\pi\)
\(728\) 0 0
\(729\) 11.5264i 0.426902i
\(730\) 0 0
\(731\) 24.2086i 0.895386i
\(732\) 0 0
\(733\) −6.08742 6.08742i −0.224844 0.224844i 0.585691 0.810535i \(-0.300823\pi\)
−0.810535 + 0.585691i \(0.800823\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.2937 + 37.2937i 1.37373 + 1.37373i
\(738\) 0 0
\(739\) 31.5684i 1.16126i −0.814167 0.580631i \(-0.802806\pi\)
0.814167 0.580631i \(-0.197194\pi\)
\(740\) 0 0
\(741\) 1.39057i 0.0510837i
\(742\) 0 0
\(743\) 0.283311 0.283311i 0.0103937 0.0103937i −0.701891 0.712285i \(-0.747661\pi\)
0.712285 + 0.701891i \(0.247661\pi\)
\(744\) 0 0
\(745\) 44.8079 + 14.2352i 1.64163 + 0.521537i
\(746\) 0 0
\(747\) 32.2228 32.2228i 1.17897 1.17897i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.29073 −0.229552 −0.114776 0.993391i \(-0.536615\pi\)
−0.114776 + 0.993391i \(0.536615\pi\)
\(752\) 0 0
\(753\) −4.01754 + 4.01754i −0.146407 + 0.146407i
\(754\) 0 0
\(755\) −12.4273 + 39.1172i −0.452276 + 1.42362i
\(756\) 0 0
\(757\) −28.1189 28.1189i −1.02200 1.02200i −0.999753 0.0222456i \(-0.992918\pi\)
−0.0222456 0.999753i \(-0.507082\pi\)
\(758\) 0 0
\(759\) 20.5080 0.744394
\(760\) 0 0
\(761\) 35.5923i 1.29022i −0.764089 0.645111i \(-0.776811\pi\)
0.764089 0.645111i \(-0.223189\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −29.4715 + 15.2604i −1.06554 + 0.551741i
\(766\) 0 0
\(767\) 7.54532 + 7.54532i 0.272446 + 0.272446i
\(768\) 0 0
\(769\) 36.0689 1.30068 0.650338 0.759645i \(-0.274627\pi\)
0.650338 + 0.759645i \(0.274627\pi\)
\(770\) 0 0
\(771\) −12.3285 −0.444000
\(772\) 0 0
\(773\) −33.1356 33.1356i −1.19181 1.19181i −0.976560 0.215247i \(-0.930944\pi\)
−0.215247 0.976560i \(-0.569056\pi\)
\(774\) 0 0
\(775\) 11.6420 16.4734i 0.418194 0.591743i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.5644i 0.736795i
\(780\) 0 0
\(781\) 14.4115 0.515685
\(782\) 0 0
\(783\) 4.74805 + 4.74805i 0.169681 + 0.169681i
\(784\) 0 0
\(785\) 2.28268 + 4.40839i 0.0814722 + 0.157342i
\(786\) 0 0
\(787\) 13.0055 13.0055i 0.463594 0.463594i −0.436237 0.899832i \(-0.643689\pi\)
0.899832 + 0.436237i \(0.143689\pi\)
\(788\) 0 0
\(789\) 8.06128 0.286989
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.37997 1.37997i 0.0490043 0.0490043i
\(794\) 0 0
\(795\) 1.36667 4.30184i 0.0484708 0.152571i
\(796\) 0 0
\(797\) −17.7624 + 17.7624i −0.629176 + 0.629176i −0.947861 0.318685i \(-0.896759\pi\)
0.318685 + 0.947861i \(0.396759\pi\)
\(798\) 0 0
\(799\) 16.6800i 0.590097i
\(800\) 0 0
\(801\) 9.77471i 0.345372i
\(802\) 0 0
\(803\) −38.2248 38.2248i −1.34893 1.34893i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.84910 + 4.84910i 0.170697 + 0.170697i
\(808\) 0 0
\(809\) 12.5720i 0.442009i 0.975273 + 0.221004i \(0.0709335\pi\)
−0.975273 + 0.221004i \(0.929067\pi\)
\(810\) 0 0
\(811\) 42.0169i 1.47541i 0.675122 + 0.737706i \(0.264091\pi\)
−0.675122 + 0.737706i \(0.735909\pi\)
\(812\) 0 0
\(813\) −8.33986 + 8.33986i −0.292492 + 0.292492i
\(814\) 0 0
\(815\) −15.8607 30.6308i −0.555577 1.07295i
\(816\) 0 0
\(817\) 6.83539 6.83539i 0.239140 0.239140i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.6654 0.651429 0.325714 0.945468i \(-0.394395\pi\)
0.325714 + 0.945468i \(0.394395\pi\)
\(822\) 0 0
\(823\) −18.9202 + 18.9202i −0.659517 + 0.659517i −0.955266 0.295748i \(-0.904431\pi\)
0.295748 + 0.955266i \(0.404431\pi\)
\(824\) 0 0
\(825\) 2.36831 + 13.7820i 0.0824540 + 0.479828i
\(826\) 0 0
\(827\) −20.9144 20.9144i −0.727266 0.727266i 0.242809 0.970074i \(-0.421931\pi\)
−0.970074 + 0.242809i \(0.921931\pi\)
\(828\) 0 0
\(829\) 43.9505 1.52646 0.763232 0.646125i \(-0.223611\pi\)
0.763232 + 0.646125i \(0.223611\pi\)
\(830\) 0 0
\(831\) 9.53759i 0.330855i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −20.0711 38.7621i −0.694590 1.34142i
\(836\) 0 0
\(837\) 9.07955 + 9.07955i 0.313835 + 0.313835i
\(838\) 0 0
\(839\) −20.4994 −0.707719 −0.353860 0.935299i \(-0.615131\pi\)
−0.353860 + 0.935299i \(0.615131\pi\)
\(840\) 0 0
\(841\) 24.5490 0.846516
\(842\) 0 0
\(843\) 2.08824 + 2.08824i 0.0719229 + 0.0719229i
\(844\) 0 0
\(845\) 25.0006 + 7.94255i 0.860048 + 0.273232i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 6.50948i 0.223405i
\(850\) 0 0
\(851\) 70.0890 2.40262
\(852\) 0 0
\(853\) −5.82507 5.82507i −0.199446 0.199446i 0.600316 0.799763i \(-0.295041\pi\)
−0.799763 + 0.600316i \(0.795041\pi\)
\(854\) 0 0
\(855\) 12.6302 + 4.01255i 0.431945 + 0.137226i
\(856\) 0 0
\(857\) 1.58415 1.58415i 0.0541134 0.0541134i −0.679532 0.733646i \(-0.737817\pi\)
0.733646 + 0.679532i \(0.237817\pi\)
\(858\) 0 0
\(859\) −36.4128 −1.24239 −0.621195 0.783656i \(-0.713352\pi\)
−0.621195 + 0.783656i \(0.713352\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.5461 32.5461i 1.10788 1.10788i 0.114452 0.993429i \(-0.463489\pi\)
0.993429 0.114452i \(-0.0365111\pi\)
\(864\) 0 0
\(865\) 45.4231 23.5202i 1.54443 0.799712i
\(866\) 0 0
\(867\) 5.34912 5.34912i 0.181666 0.181666i
\(868\) 0 0
\(869\) 19.1597i 0.649948i
\(870\) 0 0
\(871\) 11.8879i 0.402805i
\(872\) 0 0
\(873\) 23.3128 + 23.3128i 0.789020 + 0.789020i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 28.0988 + 28.0988i 0.948830 + 0.948830i 0.998753 0.0499226i \(-0.0158975\pi\)
−0.0499226 + 0.998753i \(0.515897\pi\)
\(878\) 0 0
\(879\) 9.49118i 0.320130i
\(880\) 0 0
\(881\) 18.7851i 0.632886i 0.948611 + 0.316443i \(0.102489\pi\)
−0.948611 + 0.316443i \(0.897511\pi\)
\(882\) 0 0
\(883\) −9.79247 + 9.79247i −0.329543 + 0.329543i −0.852413 0.522870i \(-0.824861\pi\)
0.522870 + 0.852413i \(0.324861\pi\)
\(884\) 0 0
\(885\) 10.5281 5.45150i 0.353899 0.183250i
\(886\) 0 0
\(887\) −36.4721 + 36.4721i −1.22461 + 1.22461i −0.258640 + 0.965974i \(0.583274\pi\)
−0.965974 + 0.258640i \(0.916726\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 31.3775 1.05119
\(892\) 0 0
\(893\) −4.70968 + 4.70968i −0.157604 + 0.157604i
\(894\) 0 0
\(895\) −30.2103 9.59763i −1.00982 0.320813i
\(896\) 0 0
\(897\) 3.26860 + 3.26860i 0.109135 + 0.109135i
\(898\) 0 0
\(899\) −8.51157 −0.283877
\(900\) 0 0
\(901\) 19.9242i 0.663773i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.3029 4.22624i −0.442202 0.140485i
\(906\) 0 0
\(907\) 3.96956 + 3.96956i 0.131807 + 0.131807i 0.769932 0.638125i \(-0.220290\pi\)
−0.638125 + 0.769932i \(0.720290\pi\)
\(908\) 0 0
\(909\) −5.28488 −0.175289
\(910\) 0 0
\(911\) 35.5372 1.17740 0.588701 0.808351i \(-0.299640\pi\)
0.588701 + 0.808351i \(0.299640\pi\)
\(912\) 0 0
\(913\) −59.9323 59.9323i −1.98347 1.98347i
\(914\) 0 0
\(915\) −0.997032 1.92550i −0.0329608 0.0636552i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 38.6636i 1.27540i 0.770287 + 0.637698i \(0.220113\pi\)
−0.770287 + 0.637698i \(0.779887\pi\)
\(920\) 0 0
\(921\) −8.92680 −0.294148
\(922\) 0 0
\(923\) 2.29693 + 2.29693i 0.0756045 + 0.0756045i
\(924\) 0 0
\(925\) 8.09403 + 47.1019i 0.266130 + 1.54870i
\(926\) 0 0
\(927\) 34.2560 34.2560i 1.12512 1.12512i
\(928\) 0 0
\(929\) 19.3909 0.636195 0.318097 0.948058i \(-0.396956\pi\)
0.318097 + 0.948058i \(0.396956\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.99056 6.99056i 0.228861 0.228861i
\(934\) 0 0
\(935\) 28.3834 + 54.8150i 0.928235 + 1.79264i
\(936\) 0 0
\(937\) −16.5370 + 16.5370i −0.540241 + 0.540241i −0.923600 0.383359i \(-0.874767\pi\)
0.383359 + 0.923600i \(0.374767\pi\)
\(938\) 0 0
\(939\) 2.93848i 0.0958936i
\(940\) 0 0
\(941\) 35.8082i 1.16731i −0.812001 0.583656i \(-0.801622\pi\)
0.812001 0.583656i \(-0.198378\pi\)
\(942\) 0 0
\(943\) 48.3377 + 48.3377i 1.57409 + 1.57409i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.6835 + 34.6835i 1.12706 + 1.12706i 0.990652 + 0.136411i \(0.0435568\pi\)
0.136411 + 0.990652i \(0.456443\pi\)
\(948\) 0 0
\(949\) 12.1847i 0.395531i
\(950\) 0 0
\(951\) 4.48202i 0.145340i
\(952\) 0 0
\(953\) −29.7557 + 29.7557i −0.963883 + 0.963883i −0.999370 0.0354872i \(-0.988702\pi\)
0.0354872 + 0.999370i \(0.488702\pi\)
\(954\) 0 0
\(955\) −8.49224 + 26.7309i −0.274802 + 0.864991i
\(956\) 0 0
\(957\) 4.17231 4.17231i 0.134872 0.134872i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 14.7236 0.474954
\(962\) 0 0
\(963\) 3.66093 3.66093i 0.117972 0.117972i
\(964\) 0 0
\(965\) 21.5159 + 41.5523i 0.692622 + 1.33762i
\(966\) 0 0
\(967\) 14.7694 + 14.7694i 0.474950 + 0.474950i 0.903512 0.428562i \(-0.140980\pi\)
−0.428562 + 0.903512i \(0.640980\pi\)
\(968\) 0 0
\(969\) −6.81990 −0.219087
\(970\) 0 0
\(971\) 16.0071i 0.513693i −0.966452 0.256846i \(-0.917317\pi\)
0.966452 0.256846i \(-0.0826835\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.81913 + 2.57407i −0.0582589 + 0.0824361i
\(976\) 0 0
\(977\) −10.6616 10.6616i −0.341093 0.341093i 0.515685 0.856778i \(-0.327538\pi\)
−0.856778 + 0.515685i \(0.827538\pi\)
\(978\) 0 0
\(979\) 18.1803 0.581045
\(980\) 0 0
\(981\) −2.69533 −0.0860553
\(982\) 0 0
\(983\) −2.56581 2.56581i −0.0818367 0.0818367i 0.665004 0.746840i \(-0.268430\pi\)
−0.746840 + 0.665004i \(0.768430\pi\)
\(984\) 0 0
\(985\) −5.10088 + 2.64125i −0.162528 + 0.0841573i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.1339i 1.02180i
\(990\) 0 0
\(991\) 25.0005 0.794167 0.397084 0.917782i \(-0.370022\pi\)
0.397084 + 0.917782i \(0.370022\pi\)
\(992\) 0 0
\(993\) 0.874502 + 0.874502i 0.0277515 + 0.0277515i
\(994\) 0 0
\(995\) 13.6266 42.8922i 0.431992 1.35978i
\(996\) 0 0
\(997\) −19.5035 + 19.5035i −0.617681 + 0.617681i −0.944936 0.327255i \(-0.893876\pi\)
0.327255 + 0.944936i \(0.393876\pi\)
\(998\) 0 0
\(999\) −30.4220 −0.962509
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.m.b.97.7 yes 24
5.3 odd 4 inner 980.2.m.b.293.6 yes 24
7.2 even 3 980.2.v.c.717.6 48
7.3 odd 6 980.2.v.c.117.6 48
7.4 even 3 980.2.v.c.117.7 48
7.5 odd 6 980.2.v.c.717.7 48
7.6 odd 2 inner 980.2.m.b.97.6 24
35.3 even 12 980.2.v.c.313.6 48
35.13 even 4 inner 980.2.m.b.293.7 yes 24
35.18 odd 12 980.2.v.c.313.7 48
35.23 odd 12 980.2.v.c.913.6 48
35.33 even 12 980.2.v.c.913.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.m.b.97.6 24 7.6 odd 2 inner
980.2.m.b.97.7 yes 24 1.1 even 1 trivial
980.2.m.b.293.6 yes 24 5.3 odd 4 inner
980.2.m.b.293.7 yes 24 35.13 even 4 inner
980.2.v.c.117.6 48 7.3 odd 6
980.2.v.c.117.7 48 7.4 even 3
980.2.v.c.313.6 48 35.3 even 12
980.2.v.c.313.7 48 35.18 odd 12
980.2.v.c.717.6 48 7.2 even 3
980.2.v.c.717.7 48 7.5 odd 6
980.2.v.c.913.6 48 35.23 odd 12
980.2.v.c.913.7 48 35.33 even 12