Properties

Label 9801.2.a.bi.1.3
Level $9801$
Weight $2$
Character 9801.1
Self dual yes
Analytic conductor $78.261$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.22545.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.45106\) of defining polynomial
Character \(\chi\) \(=\) 9801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.894434 q^{2} -1.19999 q^{4} +3.74893 q^{5} -1.45106 q^{7} -2.86218 q^{8} +3.35317 q^{10} -5.75661 q^{13} -1.29787 q^{14} -0.160052 q^{16} +4.79655 q^{17} -0.702126 q^{19} -4.49867 q^{20} -1.65105 q^{23} +9.05449 q^{25} -5.14891 q^{26} +1.74125 q^{28} +4.30555 q^{29} -3.30555 q^{31} +5.58120 q^{32} +4.29019 q^{34} -5.43991 q^{35} +9.73779 q^{37} -0.628005 q^{38} -10.7301 q^{40} -4.24760 q^{41} +4.10557 q^{43} -1.47675 q^{46} +1.79655 q^{47} -4.89443 q^{49} +8.09864 q^{50} +6.90787 q^{52} -1.15318 q^{53} +4.15318 q^{56} +3.85103 q^{58} -4.65105 q^{59} -2.54894 q^{61} -2.95660 q^{62} +5.31212 q^{64} -21.5811 q^{65} +8.94124 q^{67} -5.75580 q^{68} -4.86564 q^{70} +5.14204 q^{71} -10.5378 q^{73} +8.70981 q^{74} +0.842543 q^{76} +1.08674 q^{79} -0.600024 q^{80} -3.79920 q^{82} +3.80342 q^{83} +17.9819 q^{85} +3.67216 q^{86} -4.01536 q^{89} +8.35317 q^{91} +1.98123 q^{92} +1.60689 q^{94} -2.63222 q^{95} +3.29101 q^{97} -4.37775 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 11 q^{4} + 4 q^{5} - q^{7} - q^{10} - 7 q^{13} + q^{14} + 17 q^{16} + 5 q^{17} - 9 q^{19} - 10 q^{20} + 14 q^{23} + 14 q^{25} + 22 q^{26} + q^{28} + 6 q^{29} - 2 q^{31} + 34 q^{32} + 16 q^{34}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.894434 0.632460 0.316230 0.948683i \(-0.397583\pi\)
0.316230 + 0.948683i \(0.397583\pi\)
\(3\) 0 0
\(4\) −1.19999 −0.599994
\(5\) 3.74893 1.67657 0.838287 0.545230i \(-0.183558\pi\)
0.838287 + 0.545230i \(0.183558\pi\)
\(6\) 0 0
\(7\) −1.45106 −0.548448 −0.274224 0.961666i \(-0.588421\pi\)
−0.274224 + 0.961666i \(0.588421\pi\)
\(8\) −2.86218 −1.01193
\(9\) 0 0
\(10\) 3.35317 1.06037
\(11\) 0 0
\(12\) 0 0
\(13\) −5.75661 −1.59660 −0.798298 0.602262i \(-0.794266\pi\)
−0.798298 + 0.602262i \(0.794266\pi\)
\(14\) −1.29787 −0.346872
\(15\) 0 0
\(16\) −0.160052 −0.0400130
\(17\) 4.79655 1.16333 0.581667 0.813427i \(-0.302401\pi\)
0.581667 + 0.813427i \(0.302401\pi\)
\(18\) 0 0
\(19\) −0.702126 −0.161079 −0.0805393 0.996751i \(-0.525664\pi\)
−0.0805393 + 0.996751i \(0.525664\pi\)
\(20\) −4.49867 −1.00593
\(21\) 0 0
\(22\) 0 0
\(23\) −1.65105 −0.344267 −0.172133 0.985074i \(-0.555066\pi\)
−0.172133 + 0.985074i \(0.555066\pi\)
\(24\) 0 0
\(25\) 9.05449 1.81090
\(26\) −5.14891 −1.00978
\(27\) 0 0
\(28\) 1.74125 0.329066
\(29\) 4.30555 0.799521 0.399761 0.916620i \(-0.369093\pi\)
0.399761 + 0.916620i \(0.369093\pi\)
\(30\) 0 0
\(31\) −3.30555 −0.593695 −0.296848 0.954925i \(-0.595935\pi\)
−0.296848 + 0.954925i \(0.595935\pi\)
\(32\) 5.58120 0.986626
\(33\) 0 0
\(34\) 4.29019 0.735762
\(35\) −5.43991 −0.919513
\(36\) 0 0
\(37\) 9.73779 1.60088 0.800441 0.599411i \(-0.204599\pi\)
0.800441 + 0.599411i \(0.204599\pi\)
\(38\) −0.628005 −0.101876
\(39\) 0 0
\(40\) −10.7301 −1.69658
\(41\) −4.24760 −0.663364 −0.331682 0.943391i \(-0.607616\pi\)
−0.331682 + 0.943391i \(0.607616\pi\)
\(42\) 0 0
\(43\) 4.10557 0.626093 0.313046 0.949738i \(-0.398650\pi\)
0.313046 + 0.949738i \(0.398650\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.47675 −0.217735
\(47\) 1.79655 0.262053 0.131027 0.991379i \(-0.458173\pi\)
0.131027 + 0.991379i \(0.458173\pi\)
\(48\) 0 0
\(49\) −4.89443 −0.699205
\(50\) 8.09864 1.14532
\(51\) 0 0
\(52\) 6.90787 0.957949
\(53\) −1.15318 −0.158402 −0.0792009 0.996859i \(-0.525237\pi\)
−0.0792009 + 0.996859i \(0.525237\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.15318 0.554992
\(57\) 0 0
\(58\) 3.85103 0.505665
\(59\) −4.65105 −0.605515 −0.302757 0.953068i \(-0.597907\pi\)
−0.302757 + 0.953068i \(0.597907\pi\)
\(60\) 0 0
\(61\) −2.54894 −0.326359 −0.163179 0.986596i \(-0.552175\pi\)
−0.163179 + 0.986596i \(0.552175\pi\)
\(62\) −2.95660 −0.375489
\(63\) 0 0
\(64\) 5.31212 0.664015
\(65\) −21.5811 −2.67681
\(66\) 0 0
\(67\) 8.94124 1.09235 0.546173 0.837672i \(-0.316084\pi\)
0.546173 + 0.837672i \(0.316084\pi\)
\(68\) −5.75580 −0.697993
\(69\) 0 0
\(70\) −4.86564 −0.581555
\(71\) 5.14204 0.610248 0.305124 0.952313i \(-0.401302\pi\)
0.305124 + 0.952313i \(0.401302\pi\)
\(72\) 0 0
\(73\) −10.5378 −1.23336 −0.616678 0.787215i \(-0.711522\pi\)
−0.616678 + 0.787215i \(0.711522\pi\)
\(74\) 8.70981 1.01249
\(75\) 0 0
\(76\) 0.842543 0.0966463
\(77\) 0 0
\(78\) 0 0
\(79\) 1.08674 0.122268 0.0611340 0.998130i \(-0.480528\pi\)
0.0611340 + 0.998130i \(0.480528\pi\)
\(80\) −0.600024 −0.0670847
\(81\) 0 0
\(82\) −3.79920 −0.419552
\(83\) 3.80342 0.417479 0.208740 0.977971i \(-0.433064\pi\)
0.208740 + 0.977971i \(0.433064\pi\)
\(84\) 0 0
\(85\) 17.9819 1.95041
\(86\) 3.67216 0.395979
\(87\) 0 0
\(88\) 0 0
\(89\) −4.01536 −0.425627 −0.212814 0.977093i \(-0.568263\pi\)
−0.212814 + 0.977093i \(0.568263\pi\)
\(90\) 0 0
\(91\) 8.35317 0.875650
\(92\) 1.98123 0.206558
\(93\) 0 0
\(94\) 1.60689 0.165738
\(95\) −2.63222 −0.270060
\(96\) 0 0
\(97\) 3.29101 0.334151 0.167075 0.985944i \(-0.446568\pi\)
0.167075 + 0.985944i \(0.446568\pi\)
\(98\) −4.37775 −0.442219
\(99\) 0 0
\(100\) −10.8653 −1.08653
\(101\) −14.1931 −1.41226 −0.706131 0.708081i \(-0.749561\pi\)
−0.706131 + 0.708081i \(0.749561\pi\)
\(102\) 0 0
\(103\) 19.1777 1.88963 0.944817 0.327597i \(-0.106239\pi\)
0.944817 + 0.327597i \(0.106239\pi\)
\(104\) 16.4764 1.61565
\(105\) 0 0
\(106\) −1.03145 −0.100183
\(107\) 10.0034 0.967066 0.483533 0.875326i \(-0.339353\pi\)
0.483533 + 0.875326i \(0.339353\pi\)
\(108\) 0 0
\(109\) 7.40766 0.709525 0.354762 0.934956i \(-0.384562\pi\)
0.354762 + 0.934956i \(0.384562\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.232244 0.0219450
\(113\) 1.64337 0.154595 0.0772974 0.997008i \(-0.475371\pi\)
0.0772974 + 0.997008i \(0.475371\pi\)
\(114\) 0 0
\(115\) −6.18965 −0.577188
\(116\) −5.16661 −0.479708
\(117\) 0 0
\(118\) −4.16005 −0.382964
\(119\) −6.96006 −0.638028
\(120\) 0 0
\(121\) 0 0
\(122\) −2.27986 −0.206409
\(123\) 0 0
\(124\) 3.96663 0.356214
\(125\) 15.2000 1.35953
\(126\) 0 0
\(127\) 22.3309 1.98155 0.990773 0.135534i \(-0.0432750\pi\)
0.990773 + 0.135534i \(0.0432750\pi\)
\(128\) −6.41106 −0.566663
\(129\) 0 0
\(130\) −19.3029 −1.69298
\(131\) 9.78887 0.855257 0.427629 0.903954i \(-0.359349\pi\)
0.427629 + 0.903954i \(0.359349\pi\)
\(132\) 0 0
\(133\) 1.01882 0.0883433
\(134\) 7.99735 0.690866
\(135\) 0 0
\(136\) −13.7286 −1.17722
\(137\) −2.37621 −0.203013 −0.101507 0.994835i \(-0.532366\pi\)
−0.101507 + 0.994835i \(0.532366\pi\)
\(138\) 0 0
\(139\) 11.4867 0.974291 0.487145 0.873321i \(-0.338038\pi\)
0.487145 + 0.873321i \(0.338038\pi\)
\(140\) 6.52783 0.551702
\(141\) 0 0
\(142\) 4.59921 0.385957
\(143\) 0 0
\(144\) 0 0
\(145\) 16.1412 1.34046
\(146\) −9.42536 −0.780049
\(147\) 0 0
\(148\) −11.6852 −0.960520
\(149\) 0.701315 0.0574540 0.0287270 0.999587i \(-0.490855\pi\)
0.0287270 + 0.999587i \(0.490855\pi\)
\(150\) 0 0
\(151\) 2.50554 0.203898 0.101949 0.994790i \(-0.467492\pi\)
0.101949 + 0.994790i \(0.467492\pi\)
\(152\) 2.00961 0.163001
\(153\) 0 0
\(154\) 0 0
\(155\) −12.3923 −0.995373
\(156\) 0 0
\(157\) 4.43570 0.354007 0.177004 0.984210i \(-0.443360\pi\)
0.177004 + 0.984210i \(0.443360\pi\)
\(158\) 0.972019 0.0773297
\(159\) 0 0
\(160\) 20.9235 1.65415
\(161\) 2.39576 0.188812
\(162\) 0 0
\(163\) 17.6986 1.38626 0.693131 0.720812i \(-0.256231\pi\)
0.693131 + 0.720812i \(0.256231\pi\)
\(164\) 5.09708 0.398015
\(165\) 0 0
\(166\) 3.40190 0.264039
\(167\) 8.90130 0.688804 0.344402 0.938822i \(-0.388082\pi\)
0.344402 + 0.938822i \(0.388082\pi\)
\(168\) 0 0
\(169\) 20.1386 1.54912
\(170\) 16.0836 1.23356
\(171\) 0 0
\(172\) −4.92663 −0.375652
\(173\) 24.7309 1.88025 0.940126 0.340827i \(-0.110707\pi\)
0.940126 + 0.340827i \(0.110707\pi\)
\(174\) 0 0
\(175\) −13.1386 −0.993183
\(176\) 0 0
\(177\) 0 0
\(178\) −3.59147 −0.269192
\(179\) −11.8587 −0.886362 −0.443181 0.896432i \(-0.646150\pi\)
−0.443181 + 0.896432i \(0.646150\pi\)
\(180\) 0 0
\(181\) −4.94546 −0.367593 −0.183796 0.982964i \(-0.558839\pi\)
−0.183796 + 0.982964i \(0.558839\pi\)
\(182\) 7.47136 0.553814
\(183\) 0 0
\(184\) 4.72558 0.348375
\(185\) 36.5063 2.68400
\(186\) 0 0
\(187\) 0 0
\(188\) −2.15584 −0.157230
\(189\) 0 0
\(190\) −2.35435 −0.170802
\(191\) 0.323568 0.0234126 0.0117063 0.999931i \(-0.496274\pi\)
0.0117063 + 0.999931i \(0.496274\pi\)
\(192\) 0 0
\(193\) −14.4153 −1.03764 −0.518819 0.854884i \(-0.673628\pi\)
−0.518819 + 0.854884i \(0.673628\pi\)
\(194\) 2.94359 0.211337
\(195\) 0 0
\(196\) 5.87326 0.419519
\(197\) 18.3267 1.30572 0.652860 0.757478i \(-0.273569\pi\)
0.652860 + 0.757478i \(0.273569\pi\)
\(198\) 0 0
\(199\) −1.51211 −0.107190 −0.0535951 0.998563i \(-0.517068\pi\)
−0.0535951 + 0.998563i \(0.517068\pi\)
\(200\) −25.9155 −1.83251
\(201\) 0 0
\(202\) −12.6948 −0.893200
\(203\) −6.24760 −0.438496
\(204\) 0 0
\(205\) −15.9240 −1.11218
\(206\) 17.1532 1.19512
\(207\) 0 0
\(208\) 0.921357 0.0638846
\(209\) 0 0
\(210\) 0 0
\(211\) 11.0222 0.758802 0.379401 0.925232i \(-0.376130\pi\)
0.379401 + 0.925232i \(0.376130\pi\)
\(212\) 1.38381 0.0950402
\(213\) 0 0
\(214\) 8.94738 0.611631
\(215\) 15.3915 1.04969
\(216\) 0 0
\(217\) 4.79655 0.325611
\(218\) 6.62566 0.448746
\(219\) 0 0
\(220\) 0 0
\(221\) −27.6119 −1.85737
\(222\) 0 0
\(223\) −23.3132 −1.56117 −0.780585 0.625050i \(-0.785079\pi\)
−0.780585 + 0.625050i \(0.785079\pi\)
\(224\) −8.09864 −0.541113
\(225\) 0 0
\(226\) 1.46988 0.0977750
\(227\) −5.97889 −0.396833 −0.198416 0.980118i \(-0.563580\pi\)
−0.198416 + 0.980118i \(0.563580\pi\)
\(228\) 0 0
\(229\) 9.42455 0.622792 0.311396 0.950280i \(-0.399203\pi\)
0.311396 + 0.950280i \(0.399203\pi\)
\(230\) −5.53624 −0.365049
\(231\) 0 0
\(232\) −12.3233 −0.809062
\(233\) −27.1685 −1.77987 −0.889933 0.456091i \(-0.849249\pi\)
−0.889933 + 0.456091i \(0.849249\pi\)
\(234\) 0 0
\(235\) 6.73513 0.439352
\(236\) 5.58120 0.363305
\(237\) 0 0
\(238\) −6.22532 −0.403527
\(239\) −0.242578 −0.0156911 −0.00784553 0.999969i \(-0.502497\pi\)
−0.00784553 + 0.999969i \(0.502497\pi\)
\(240\) 0 0
\(241\) 12.7106 0.818759 0.409379 0.912364i \(-0.365745\pi\)
0.409379 + 0.912364i \(0.365745\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 3.05870 0.195813
\(245\) −18.3489 −1.17227
\(246\) 0 0
\(247\) 4.04186 0.257178
\(248\) 9.46108 0.600779
\(249\) 0 0
\(250\) 13.5954 0.859848
\(251\) 23.6134 1.49046 0.745232 0.666805i \(-0.232339\pi\)
0.745232 + 0.666805i \(0.232339\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 19.9735 1.25325
\(255\) 0 0
\(256\) −16.3585 −1.02241
\(257\) 4.11671 0.256793 0.128397 0.991723i \(-0.459017\pi\)
0.128397 + 0.991723i \(0.459017\pi\)
\(258\) 0 0
\(259\) −14.1301 −0.878001
\(260\) 25.8971 1.60607
\(261\) 0 0
\(262\) 8.75549 0.540916
\(263\) 11.5923 0.714811 0.357405 0.933949i \(-0.383661\pi\)
0.357405 + 0.933949i \(0.383661\pi\)
\(264\) 0 0
\(265\) −4.32320 −0.265572
\(266\) 0.911271 0.0558736
\(267\) 0 0
\(268\) −10.7294 −0.655401
\(269\) −6.82534 −0.416148 −0.208074 0.978113i \(-0.566720\pi\)
−0.208074 + 0.978113i \(0.566720\pi\)
\(270\) 0 0
\(271\) 7.57539 0.460172 0.230086 0.973170i \(-0.426099\pi\)
0.230086 + 0.973170i \(0.426099\pi\)
\(272\) −0.767697 −0.0465484
\(273\) 0 0
\(274\) −2.12536 −0.128398
\(275\) 0 0
\(276\) 0 0
\(277\) 18.8034 1.12978 0.564892 0.825165i \(-0.308918\pi\)
0.564892 + 0.825165i \(0.308918\pi\)
\(278\) 10.2741 0.616200
\(279\) 0 0
\(280\) 15.5700 0.930485
\(281\) −24.8832 −1.48441 −0.742205 0.670173i \(-0.766220\pi\)
−0.742205 + 0.670173i \(0.766220\pi\)
\(282\) 0 0
\(283\) 18.1412 1.07838 0.539192 0.842183i \(-0.318730\pi\)
0.539192 + 0.842183i \(0.318730\pi\)
\(284\) −6.17039 −0.366145
\(285\) 0 0
\(286\) 0 0
\(287\) 6.16352 0.363821
\(288\) 0 0
\(289\) 6.00687 0.353345
\(290\) 14.4373 0.847785
\(291\) 0 0
\(292\) 12.6452 0.740006
\(293\) 16.0775 0.939259 0.469630 0.882864i \(-0.344387\pi\)
0.469630 + 0.882864i \(0.344387\pi\)
\(294\) 0 0
\(295\) −17.4364 −1.01519
\(296\) −27.8713 −1.61998
\(297\) 0 0
\(298\) 0.627280 0.0363373
\(299\) 9.50443 0.549655
\(300\) 0 0
\(301\) −5.95741 −0.343379
\(302\) 2.24104 0.128957
\(303\) 0 0
\(304\) 0.112377 0.00644524
\(305\) −9.55581 −0.547164
\(306\) 0 0
\(307\) 20.1343 1.14913 0.574563 0.818461i \(-0.305172\pi\)
0.574563 + 0.818461i \(0.305172\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −11.0841 −0.629534
\(311\) −13.0245 −0.738553 −0.369276 0.929320i \(-0.620394\pi\)
−0.369276 + 0.929320i \(0.620394\pi\)
\(312\) 0 0
\(313\) 10.2518 0.579467 0.289734 0.957107i \(-0.406433\pi\)
0.289734 + 0.957107i \(0.406433\pi\)
\(314\) 3.96744 0.223895
\(315\) 0 0
\(316\) −1.30408 −0.0733601
\(317\) −11.0176 −0.618813 −0.309406 0.950930i \(-0.600130\pi\)
−0.309406 + 0.950930i \(0.600130\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 19.9148 1.11327
\(321\) 0 0
\(322\) 2.14285 0.119416
\(323\) −3.36778 −0.187388
\(324\) 0 0
\(325\) −52.1232 −2.89127
\(326\) 15.8302 0.876755
\(327\) 0 0
\(328\) 12.1574 0.671280
\(329\) −2.60689 −0.143723
\(330\) 0 0
\(331\) −18.1443 −0.997302 −0.498651 0.866803i \(-0.666171\pi\)
−0.498651 + 0.866803i \(0.666171\pi\)
\(332\) −4.56406 −0.250485
\(333\) 0 0
\(334\) 7.96163 0.435641
\(335\) 33.5201 1.83140
\(336\) 0 0
\(337\) 1.67909 0.0914656 0.0457328 0.998954i \(-0.485438\pi\)
0.0457328 + 0.998954i \(0.485438\pi\)
\(338\) 18.0126 0.979757
\(339\) 0 0
\(340\) −21.5781 −1.17024
\(341\) 0 0
\(342\) 0 0
\(343\) 17.2595 0.931925
\(344\) −11.7509 −0.633564
\(345\) 0 0
\(346\) 22.1201 1.18918
\(347\) 18.7812 1.00823 0.504113 0.863637i \(-0.331819\pi\)
0.504113 + 0.863637i \(0.331819\pi\)
\(348\) 0 0
\(349\) −32.5089 −1.74016 −0.870082 0.492907i \(-0.835934\pi\)
−0.870082 + 0.492907i \(0.835934\pi\)
\(350\) −11.7516 −0.628149
\(351\) 0 0
\(352\) 0 0
\(353\) 6.70975 0.357124 0.178562 0.983929i \(-0.442856\pi\)
0.178562 + 0.983929i \(0.442856\pi\)
\(354\) 0 0
\(355\) 19.2771 1.02312
\(356\) 4.81838 0.255374
\(357\) 0 0
\(358\) −10.6068 −0.560589
\(359\) −14.7797 −0.780040 −0.390020 0.920806i \(-0.627532\pi\)
−0.390020 + 0.920806i \(0.627532\pi\)
\(360\) 0 0
\(361\) −18.5070 −0.974054
\(362\) −4.42338 −0.232488
\(363\) 0 0
\(364\) −10.0237 −0.525385
\(365\) −39.5055 −2.06781
\(366\) 0 0
\(367\) 26.5869 1.38782 0.693912 0.720060i \(-0.255886\pi\)
0.693912 + 0.720060i \(0.255886\pi\)
\(368\) 0.264253 0.0137751
\(369\) 0 0
\(370\) 32.6525 1.69752
\(371\) 1.67333 0.0868752
\(372\) 0 0
\(373\) −23.5563 −1.21970 −0.609848 0.792518i \(-0.708770\pi\)
−0.609848 + 0.792518i \(0.708770\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −5.14204 −0.265180
\(377\) −24.7854 −1.27651
\(378\) 0 0
\(379\) 31.6536 1.62594 0.812969 0.582307i \(-0.197850\pi\)
0.812969 + 0.582307i \(0.197850\pi\)
\(380\) 3.15863 0.162035
\(381\) 0 0
\(382\) 0.289410 0.0148075
\(383\) −35.8440 −1.83155 −0.915773 0.401697i \(-0.868420\pi\)
−0.915773 + 0.401697i \(0.868420\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −12.8936 −0.656265
\(387\) 0 0
\(388\) −3.94917 −0.200489
\(389\) 3.92169 0.198838 0.0994188 0.995046i \(-0.468302\pi\)
0.0994188 + 0.995046i \(0.468302\pi\)
\(390\) 0 0
\(391\) −7.91932 −0.400497
\(392\) 14.0087 0.707548
\(393\) 0 0
\(394\) 16.3920 0.825817
\(395\) 4.07412 0.204991
\(396\) 0 0
\(397\) −3.90292 −0.195882 −0.0979411 0.995192i \(-0.531226\pi\)
−0.0979411 + 0.995192i \(0.531226\pi\)
\(398\) −1.35248 −0.0677936
\(399\) 0 0
\(400\) −1.44919 −0.0724594
\(401\) 31.6755 1.58180 0.790900 0.611946i \(-0.209613\pi\)
0.790900 + 0.611946i \(0.209613\pi\)
\(402\) 0 0
\(403\) 19.0288 0.947892
\(404\) 17.0315 0.847349
\(405\) 0 0
\(406\) −5.58807 −0.277331
\(407\) 0 0
\(408\) 0 0
\(409\) 12.9163 0.638670 0.319335 0.947642i \(-0.396541\pi\)
0.319335 + 0.947642i \(0.396541\pi\)
\(410\) −14.2429 −0.703409
\(411\) 0 0
\(412\) −23.0130 −1.13377
\(413\) 6.74893 0.332093
\(414\) 0 0
\(415\) 14.2587 0.699934
\(416\) −32.1288 −1.57524
\(417\) 0 0
\(418\) 0 0
\(419\) 27.3608 1.33666 0.668331 0.743864i \(-0.267009\pi\)
0.668331 + 0.743864i \(0.267009\pi\)
\(420\) 0 0
\(421\) −19.5777 −0.954158 −0.477079 0.878861i \(-0.658304\pi\)
−0.477079 + 0.878861i \(0.658304\pi\)
\(422\) 9.85865 0.479912
\(423\) 0 0
\(424\) 3.30061 0.160292
\(425\) 43.4303 2.10668
\(426\) 0 0
\(427\) 3.69866 0.178991
\(428\) −12.0040 −0.580234
\(429\) 0 0
\(430\) 13.7667 0.663888
\(431\) −9.80495 −0.472288 −0.236144 0.971718i \(-0.575884\pi\)
−0.236144 + 0.971718i \(0.575884\pi\)
\(432\) 0 0
\(433\) −1.98391 −0.0953409 −0.0476704 0.998863i \(-0.515180\pi\)
−0.0476704 + 0.998863i \(0.515180\pi\)
\(434\) 4.29019 0.205936
\(435\) 0 0
\(436\) −8.88910 −0.425711
\(437\) 1.15924 0.0554540
\(438\) 0 0
\(439\) −35.0617 −1.67341 −0.836703 0.547657i \(-0.815520\pi\)
−0.836703 + 0.547657i \(0.815520\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.6970 −1.17472
\(443\) 23.7121 1.12660 0.563298 0.826254i \(-0.309532\pi\)
0.563298 + 0.826254i \(0.309532\pi\)
\(444\) 0 0
\(445\) −15.0533 −0.713595
\(446\) −20.8521 −0.987378
\(447\) 0 0
\(448\) −7.70818 −0.364177
\(449\) −11.6575 −0.550154 −0.275077 0.961422i \(-0.588703\pi\)
−0.275077 + 0.961422i \(0.588703\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.97202 −0.0927560
\(453\) 0 0
\(454\) −5.34772 −0.250981
\(455\) 31.3155 1.46809
\(456\) 0 0
\(457\) −13.2003 −0.617484 −0.308742 0.951146i \(-0.599908\pi\)
−0.308742 + 0.951146i \(0.599908\pi\)
\(458\) 8.42964 0.393891
\(459\) 0 0
\(460\) 7.42751 0.346310
\(461\) 30.2913 1.41080 0.705402 0.708807i \(-0.250766\pi\)
0.705402 + 0.708807i \(0.250766\pi\)
\(462\) 0 0
\(463\) −27.2119 −1.26464 −0.632322 0.774706i \(-0.717898\pi\)
−0.632322 + 0.774706i \(0.717898\pi\)
\(464\) −0.689112 −0.0319912
\(465\) 0 0
\(466\) −24.3004 −1.12569
\(467\) 31.1873 1.44318 0.721588 0.692322i \(-0.243412\pi\)
0.721588 + 0.692322i \(0.243412\pi\)
\(468\) 0 0
\(469\) −12.9742 −0.599095
\(470\) 6.02413 0.277872
\(471\) 0 0
\(472\) 13.3121 0.612740
\(473\) 0 0
\(474\) 0 0
\(475\) −6.35739 −0.291697
\(476\) 8.35199 0.382813
\(477\) 0 0
\(478\) −0.216970 −0.00992397
\(479\) 38.2771 1.74893 0.874464 0.485091i \(-0.161213\pi\)
0.874464 + 0.485091i \(0.161213\pi\)
\(480\) 0 0
\(481\) −56.0567 −2.55596
\(482\) 11.3688 0.517832
\(483\) 0 0
\(484\) 0 0
\(485\) 12.3378 0.560228
\(486\) 0 0
\(487\) −15.8602 −0.718697 −0.359348 0.933204i \(-0.617001\pi\)
−0.359348 + 0.933204i \(0.617001\pi\)
\(488\) 7.29553 0.330253
\(489\) 0 0
\(490\) −16.4119 −0.741413
\(491\) 7.00229 0.316009 0.158004 0.987438i \(-0.449494\pi\)
0.158004 + 0.987438i \(0.449494\pi\)
\(492\) 0 0
\(493\) 20.6518 0.930110
\(494\) 3.61518 0.162655
\(495\) 0 0
\(496\) 0.529060 0.0237555
\(497\) −7.46139 −0.334689
\(498\) 0 0
\(499\) 24.6705 1.10440 0.552202 0.833710i \(-0.313788\pi\)
0.552202 + 0.833710i \(0.313788\pi\)
\(500\) −18.2398 −0.815709
\(501\) 0 0
\(502\) 21.1206 0.942659
\(503\) −6.05183 −0.269838 −0.134919 0.990857i \(-0.543077\pi\)
−0.134919 + 0.990857i \(0.543077\pi\)
\(504\) 0 0
\(505\) −53.2088 −2.36776
\(506\) 0 0
\(507\) 0 0
\(508\) −26.7968 −1.18892
\(509\) −20.0560 −0.888965 −0.444482 0.895788i \(-0.646612\pi\)
−0.444482 + 0.895788i \(0.646612\pi\)
\(510\) 0 0
\(511\) 15.2909 0.676432
\(512\) −1.80948 −0.0799683
\(513\) 0 0
\(514\) 3.68212 0.162412
\(515\) 71.8959 3.16811
\(516\) 0 0
\(517\) 0 0
\(518\) −12.6384 −0.555300
\(519\) 0 0
\(520\) 61.7691 2.70875
\(521\) 18.8721 0.826804 0.413402 0.910549i \(-0.364340\pi\)
0.413402 + 0.910549i \(0.364340\pi\)
\(522\) 0 0
\(523\) 16.0568 0.702114 0.351057 0.936354i \(-0.385822\pi\)
0.351057 + 0.936354i \(0.385822\pi\)
\(524\) −11.7465 −0.513149
\(525\) 0 0
\(526\) 10.3685 0.452089
\(527\) −15.8552 −0.690666
\(528\) 0 0
\(529\) −20.2740 −0.881480
\(530\) −3.86682 −0.167964
\(531\) 0 0
\(532\) −1.22258 −0.0530054
\(533\) 24.4518 1.05913
\(534\) 0 0
\(535\) 37.5021 1.62136
\(536\) −25.5914 −1.10538
\(537\) 0 0
\(538\) −6.10481 −0.263197
\(539\) 0 0
\(540\) 0 0
\(541\) −18.4357 −0.792614 −0.396307 0.918118i \(-0.629708\pi\)
−0.396307 + 0.918118i \(0.629708\pi\)
\(542\) 6.77568 0.291041
\(543\) 0 0
\(544\) 26.7705 1.14778
\(545\) 27.7708 1.18957
\(546\) 0 0
\(547\) 28.9669 1.23853 0.619267 0.785180i \(-0.287430\pi\)
0.619267 + 0.785180i \(0.287430\pi\)
\(548\) 2.85143 0.121807
\(549\) 0 0
\(550\) 0 0
\(551\) −3.02304 −0.128786
\(552\) 0 0
\(553\) −1.57692 −0.0670576
\(554\) 16.8184 0.714544
\(555\) 0 0
\(556\) −13.7839 −0.584569
\(557\) 11.7584 0.498219 0.249110 0.968475i \(-0.419862\pi\)
0.249110 + 0.968475i \(0.419862\pi\)
\(558\) 0 0
\(559\) −23.6341 −0.999618
\(560\) 0.870668 0.0367925
\(561\) 0 0
\(562\) −22.2564 −0.938830
\(563\) 0.565114 0.0238167 0.0119084 0.999929i \(-0.496209\pi\)
0.0119084 + 0.999929i \(0.496209\pi\)
\(564\) 0 0
\(565\) 6.16086 0.259189
\(566\) 16.2261 0.682035
\(567\) 0 0
\(568\) −14.7174 −0.617530
\(569\) −6.23342 −0.261319 −0.130659 0.991427i \(-0.541709\pi\)
−0.130659 + 0.991427i \(0.541709\pi\)
\(570\) 0 0
\(571\) 28.3934 1.18823 0.594114 0.804381i \(-0.297503\pi\)
0.594114 + 0.804381i \(0.297503\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 5.51286 0.230102
\(575\) −14.9494 −0.623432
\(576\) 0 0
\(577\) −25.5623 −1.06417 −0.532087 0.846690i \(-0.678592\pi\)
−0.532087 + 0.846690i \(0.678592\pi\)
\(578\) 5.37275 0.223477
\(579\) 0 0
\(580\) −19.3693 −0.804266
\(581\) −5.51897 −0.228966
\(582\) 0 0
\(583\) 0 0
\(584\) 30.1611 1.24807
\(585\) 0 0
\(586\) 14.3803 0.594044
\(587\) −35.1865 −1.45230 −0.726151 0.687535i \(-0.758693\pi\)
−0.726151 + 0.687535i \(0.758693\pi\)
\(588\) 0 0
\(589\) 2.32091 0.0956316
\(590\) −15.5957 −0.642067
\(591\) 0 0
\(592\) −1.55855 −0.0640561
\(593\) 40.8141 1.67604 0.838018 0.545643i \(-0.183714\pi\)
0.838018 + 0.545643i \(0.183714\pi\)
\(594\) 0 0
\(595\) −26.0928 −1.06970
\(596\) −0.841570 −0.0344720
\(597\) 0 0
\(598\) 8.50108 0.347635
\(599\) 46.4126 1.89637 0.948184 0.317721i \(-0.102918\pi\)
0.948184 + 0.317721i \(0.102918\pi\)
\(600\) 0 0
\(601\) −15.2945 −0.623874 −0.311937 0.950103i \(-0.600978\pi\)
−0.311937 + 0.950103i \(0.600978\pi\)
\(602\) −5.32851 −0.217174
\(603\) 0 0
\(604\) −3.00662 −0.122338
\(605\) 0 0
\(606\) 0 0
\(607\) 34.4948 1.40010 0.700051 0.714093i \(-0.253160\pi\)
0.700051 + 0.714093i \(0.253160\pi\)
\(608\) −3.91870 −0.158924
\(609\) 0 0
\(610\) −8.54704 −0.346060
\(611\) −10.3420 −0.418394
\(612\) 0 0
\(613\) −19.6568 −0.793931 −0.396965 0.917834i \(-0.629937\pi\)
−0.396965 + 0.917834i \(0.629937\pi\)
\(614\) 18.0088 0.726776
\(615\) 0 0
\(616\) 0 0
\(617\) −36.0533 −1.45145 −0.725726 0.687984i \(-0.758496\pi\)
−0.725726 + 0.687984i \(0.758496\pi\)
\(618\) 0 0
\(619\) −8.81995 −0.354504 −0.177252 0.984166i \(-0.556721\pi\)
−0.177252 + 0.984166i \(0.556721\pi\)
\(620\) 14.8706 0.597218
\(621\) 0 0
\(622\) −11.6496 −0.467105
\(623\) 5.82652 0.233434
\(624\) 0 0
\(625\) 11.7113 0.468451
\(626\) 9.16957 0.366490
\(627\) 0 0
\(628\) −5.32278 −0.212402
\(629\) 46.7078 1.86236
\(630\) 0 0
\(631\) −0.823111 −0.0327675 −0.0163838 0.999866i \(-0.505215\pi\)
−0.0163838 + 0.999866i \(0.505215\pi\)
\(632\) −3.11045 −0.123727
\(633\) 0 0
\(634\) −9.85456 −0.391374
\(635\) 83.7169 3.32221
\(636\) 0 0
\(637\) 28.1754 1.11635
\(638\) 0 0
\(639\) 0 0
\(640\) −24.0346 −0.950052
\(641\) 31.0472 1.22629 0.613145 0.789970i \(-0.289904\pi\)
0.613145 + 0.789970i \(0.289904\pi\)
\(642\) 0 0
\(643\) −0.565925 −0.0223179 −0.0111589 0.999938i \(-0.503552\pi\)
−0.0111589 + 0.999938i \(0.503552\pi\)
\(644\) −2.87488 −0.113286
\(645\) 0 0
\(646\) −3.01226 −0.118516
\(647\) −32.7343 −1.28692 −0.643458 0.765481i \(-0.722501\pi\)
−0.643458 + 0.765481i \(0.722501\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −46.6207 −1.82861
\(651\) 0 0
\(652\) −21.2381 −0.831749
\(653\) −7.23261 −0.283034 −0.141517 0.989936i \(-0.545198\pi\)
−0.141517 + 0.989936i \(0.545198\pi\)
\(654\) 0 0
\(655\) 36.6978 1.43390
\(656\) 0.679837 0.0265432
\(657\) 0 0
\(658\) −2.33169 −0.0908989
\(659\) −36.5089 −1.42219 −0.711093 0.703098i \(-0.751800\pi\)
−0.711093 + 0.703098i \(0.751800\pi\)
\(660\) 0 0
\(661\) 14.1432 0.550105 0.275053 0.961429i \(-0.411305\pi\)
0.275053 + 0.961429i \(0.411305\pi\)
\(662\) −16.2289 −0.630754
\(663\) 0 0
\(664\) −10.8861 −0.422461
\(665\) 3.81950 0.148114
\(666\) 0 0
\(667\) −7.10866 −0.275249
\(668\) −10.6815 −0.413278
\(669\) 0 0
\(670\) 29.9815 1.15829
\(671\) 0 0
\(672\) 0 0
\(673\) −15.5642 −0.599958 −0.299979 0.953946i \(-0.596980\pi\)
−0.299979 + 0.953946i \(0.596980\pi\)
\(674\) 1.50183 0.0578484
\(675\) 0 0
\(676\) −24.1661 −0.929464
\(677\) 34.1558 1.31271 0.656357 0.754451i \(-0.272097\pi\)
0.656357 + 0.754451i \(0.272097\pi\)
\(678\) 0 0
\(679\) −4.77544 −0.183264
\(680\) −51.4675 −1.97369
\(681\) 0 0
\(682\) 0 0
\(683\) −48.8978 −1.87102 −0.935512 0.353295i \(-0.885061\pi\)
−0.935512 + 0.353295i \(0.885061\pi\)
\(684\) 0 0
\(685\) −8.90825 −0.340367
\(686\) 15.4375 0.589406
\(687\) 0 0
\(688\) −0.657104 −0.0250518
\(689\) 6.63842 0.252904
\(690\) 0 0
\(691\) −34.1325 −1.29846 −0.649230 0.760592i \(-0.724909\pi\)
−0.649230 + 0.760592i \(0.724909\pi\)
\(692\) −29.6767 −1.12814
\(693\) 0 0
\(694\) 16.7985 0.637663
\(695\) 43.0629 1.63347
\(696\) 0 0
\(697\) −20.3738 −0.771714
\(698\) −29.0771 −1.10058
\(699\) 0 0
\(700\) 15.7661 0.595904
\(701\) 22.2291 0.839581 0.419791 0.907621i \(-0.362104\pi\)
0.419791 + 0.907621i \(0.362104\pi\)
\(702\) 0 0
\(703\) −6.83715 −0.257868
\(704\) 0 0
\(705\) 0 0
\(706\) 6.00142 0.225867
\(707\) 20.5949 0.774552
\(708\) 0 0
\(709\) −20.4395 −0.767623 −0.383812 0.923411i \(-0.625389\pi\)
−0.383812 + 0.923411i \(0.625389\pi\)
\(710\) 17.2421 0.647086
\(711\) 0 0
\(712\) 11.4927 0.430706
\(713\) 5.45762 0.204389
\(714\) 0 0
\(715\) 0 0
\(716\) 14.2303 0.531812
\(717\) 0 0
\(718\) −13.2194 −0.493344
\(719\) 19.8844 0.741563 0.370782 0.928720i \(-0.379090\pi\)
0.370782 + 0.928720i \(0.379090\pi\)
\(720\) 0 0
\(721\) −27.8279 −1.03637
\(722\) −16.5533 −0.616050
\(723\) 0 0
\(724\) 5.93449 0.220554
\(725\) 38.9846 1.44785
\(726\) 0 0
\(727\) 0.286730 0.0106342 0.00531712 0.999986i \(-0.498308\pi\)
0.00531712 + 0.999986i \(0.498308\pi\)
\(728\) −23.9083 −0.886099
\(729\) 0 0
\(730\) −35.3350 −1.30781
\(731\) 19.6925 0.728355
\(732\) 0 0
\(733\) −10.2012 −0.376789 −0.188394 0.982093i \(-0.560328\pi\)
−0.188394 + 0.982093i \(0.560328\pi\)
\(734\) 23.7802 0.877744
\(735\) 0 0
\(736\) −9.21481 −0.339662
\(737\) 0 0
\(738\) 0 0
\(739\) −29.3420 −1.07936 −0.539681 0.841870i \(-0.681455\pi\)
−0.539681 + 0.841870i \(0.681455\pi\)
\(740\) −43.8071 −1.61038
\(741\) 0 0
\(742\) 1.49669 0.0549451
\(743\) −47.8225 −1.75444 −0.877219 0.480090i \(-0.840604\pi\)
−0.877219 + 0.480090i \(0.840604\pi\)
\(744\) 0 0
\(745\) 2.62918 0.0963258
\(746\) −21.0695 −0.771410
\(747\) 0 0
\(748\) 0 0
\(749\) −14.5155 −0.530385
\(750\) 0 0
\(751\) −20.0467 −0.731516 −0.365758 0.930710i \(-0.619190\pi\)
−0.365758 + 0.930710i \(0.619190\pi\)
\(752\) −0.287541 −0.0104855
\(753\) 0 0
\(754\) −22.1689 −0.807344
\(755\) 9.39311 0.341850
\(756\) 0 0
\(757\) −34.7845 −1.26427 −0.632133 0.774860i \(-0.717820\pi\)
−0.632133 + 0.774860i \(0.717820\pi\)
\(758\) 28.3121 1.02834
\(759\) 0 0
\(760\) 7.53388 0.273283
\(761\) 6.55235 0.237522 0.118761 0.992923i \(-0.462108\pi\)
0.118761 + 0.992923i \(0.462108\pi\)
\(762\) 0 0
\(763\) −10.7489 −0.389137
\(764\) −0.388278 −0.0140474
\(765\) 0 0
\(766\) −32.0601 −1.15838
\(767\) 26.7743 0.966762
\(768\) 0 0
\(769\) 34.0222 1.22687 0.613435 0.789745i \(-0.289787\pi\)
0.613435 + 0.789745i \(0.289787\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 17.2982 0.622577
\(773\) 5.09752 0.183345 0.0916725 0.995789i \(-0.470779\pi\)
0.0916725 + 0.995789i \(0.470779\pi\)
\(774\) 0 0
\(775\) −29.9301 −1.07512
\(776\) −9.41944 −0.338138
\(777\) 0 0
\(778\) 3.50769 0.125757
\(779\) 2.98235 0.106854
\(780\) 0 0
\(781\) 0 0
\(782\) −7.08330 −0.253298
\(783\) 0 0
\(784\) 0.783363 0.0279773
\(785\) 16.6291 0.593519
\(786\) 0 0
\(787\) 25.1070 0.894969 0.447485 0.894292i \(-0.352320\pi\)
0.447485 + 0.894292i \(0.352320\pi\)
\(788\) −21.9918 −0.783425
\(789\) 0 0
\(790\) 3.64403 0.129649
\(791\) −2.38462 −0.0847872
\(792\) 0 0
\(793\) 14.6733 0.521063
\(794\) −3.49091 −0.123888
\(795\) 0 0
\(796\) 1.81451 0.0643135
\(797\) −6.79568 −0.240715 −0.120358 0.992731i \(-0.538404\pi\)
−0.120358 + 0.992731i \(0.538404\pi\)
\(798\) 0 0
\(799\) 8.61723 0.304856
\(800\) 50.5349 1.78668
\(801\) 0 0
\(802\) 28.3316 1.00042
\(803\) 0 0
\(804\) 0 0
\(805\) 8.98154 0.316558
\(806\) 17.0200 0.599504
\(807\) 0 0
\(808\) 40.6231 1.42911
\(809\) −17.0314 −0.598792 −0.299396 0.954129i \(-0.596785\pi\)
−0.299396 + 0.954129i \(0.596785\pi\)
\(810\) 0 0
\(811\) −2.28561 −0.0802587 −0.0401294 0.999194i \(-0.512777\pi\)
−0.0401294 + 0.999194i \(0.512777\pi\)
\(812\) 7.49705 0.263095
\(813\) 0 0
\(814\) 0 0
\(815\) 66.3508 2.32417
\(816\) 0 0
\(817\) −2.88262 −0.100850
\(818\) 11.5528 0.403933
\(819\) 0 0
\(820\) 19.1086 0.667301
\(821\) −22.0526 −0.769643 −0.384821 0.922991i \(-0.625737\pi\)
−0.384821 + 0.922991i \(0.625737\pi\)
\(822\) 0 0
\(823\) −24.7113 −0.861381 −0.430691 0.902500i \(-0.641730\pi\)
−0.430691 + 0.902500i \(0.641730\pi\)
\(824\) −54.8900 −1.91218
\(825\) 0 0
\(826\) 6.03647 0.210036
\(827\) −19.8452 −0.690085 −0.345043 0.938587i \(-0.612136\pi\)
−0.345043 + 0.938587i \(0.612136\pi\)
\(828\) 0 0
\(829\) 32.9988 1.14610 0.573048 0.819522i \(-0.305761\pi\)
0.573048 + 0.819522i \(0.305761\pi\)
\(830\) 12.7535 0.442681
\(831\) 0 0
\(832\) −30.5798 −1.06016
\(833\) −23.4764 −0.813409
\(834\) 0 0
\(835\) 33.3704 1.15483
\(836\) 0 0
\(837\) 0 0
\(838\) 24.4724 0.845386
\(839\) −20.2763 −0.700017 −0.350008 0.936747i \(-0.613821\pi\)
−0.350008 + 0.936747i \(0.613821\pi\)
\(840\) 0 0
\(841\) −10.4622 −0.360766
\(842\) −17.5109 −0.603467
\(843\) 0 0
\(844\) −13.2265 −0.455276
\(845\) 75.4981 2.59721
\(846\) 0 0
\(847\) 0 0
\(848\) 0.184569 0.00633813
\(849\) 0 0
\(850\) 38.8455 1.33239
\(851\) −16.0775 −0.551130
\(852\) 0 0
\(853\) 7.52894 0.257786 0.128893 0.991659i \(-0.458858\pi\)
0.128893 + 0.991659i \(0.458858\pi\)
\(854\) 3.30821 0.113205
\(855\) 0 0
\(856\) −28.6315 −0.978605
\(857\) 11.5279 0.393785 0.196893 0.980425i \(-0.436915\pi\)
0.196893 + 0.980425i \(0.436915\pi\)
\(858\) 0 0
\(859\) −2.62150 −0.0894445 −0.0447222 0.998999i \(-0.514240\pi\)
−0.0447222 + 0.998999i \(0.514240\pi\)
\(860\) −18.4696 −0.629808
\(861\) 0 0
\(862\) −8.76988 −0.298703
\(863\) 29.7385 1.01231 0.506156 0.862442i \(-0.331066\pi\)
0.506156 + 0.862442i \(0.331066\pi\)
\(864\) 0 0
\(865\) 92.7143 3.15238
\(866\) −1.77448 −0.0602993
\(867\) 0 0
\(868\) −5.75580 −0.195365
\(869\) 0 0
\(870\) 0 0
\(871\) −51.4712 −1.74404
\(872\) −21.2020 −0.717991
\(873\) 0 0
\(874\) 1.03686 0.0350725
\(875\) −22.0560 −0.745631
\(876\) 0 0
\(877\) −2.12246 −0.0716705 −0.0358352 0.999358i \(-0.511409\pi\)
−0.0358352 + 0.999358i \(0.511409\pi\)
\(878\) −31.3604 −1.05836
\(879\) 0 0
\(880\) 0 0
\(881\) 14.0627 0.473783 0.236892 0.971536i \(-0.423871\pi\)
0.236892 + 0.971536i \(0.423871\pi\)
\(882\) 0 0
\(883\) −20.5227 −0.690645 −0.345323 0.938484i \(-0.612231\pi\)
−0.345323 + 0.938484i \(0.612231\pi\)
\(884\) 33.1339 1.11441
\(885\) 0 0
\(886\) 21.2089 0.712527
\(887\) −2.51373 −0.0844027 −0.0422013 0.999109i \(-0.513437\pi\)
−0.0422013 + 0.999109i \(0.513437\pi\)
\(888\) 0 0
\(889\) −32.4034 −1.08677
\(890\) −13.4642 −0.451321
\(891\) 0 0
\(892\) 27.9756 0.936693
\(893\) −1.26140 −0.0422112
\(894\) 0 0
\(895\) −44.4575 −1.48605
\(896\) 9.30282 0.310785
\(897\) 0 0
\(898\) −10.4269 −0.347950
\(899\) −14.2322 −0.474672
\(900\) 0 0
\(901\) −5.53130 −0.184274
\(902\) 0 0
\(903\) 0 0
\(904\) −4.70360 −0.156439
\(905\) −18.5402 −0.616296
\(906\) 0 0
\(907\) 33.2306 1.10341 0.551703 0.834041i \(-0.313978\pi\)
0.551703 + 0.834041i \(0.313978\pi\)
\(908\) 7.17460 0.238097
\(909\) 0 0
\(910\) 28.0096 0.928509
\(911\) 5.54894 0.183845 0.0919223 0.995766i \(-0.470699\pi\)
0.0919223 + 0.995766i \(0.470699\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −11.8068 −0.390534
\(915\) 0 0
\(916\) −11.3094 −0.373672
\(917\) −14.2042 −0.469064
\(918\) 0 0
\(919\) 46.9009 1.54712 0.773560 0.633724i \(-0.218474\pi\)
0.773560 + 0.633724i \(0.218474\pi\)
\(920\) 17.7159 0.584076
\(921\) 0 0
\(922\) 27.0935 0.892278
\(923\) −29.6007 −0.974319
\(924\) 0 0
\(925\) 88.1707 2.89903
\(926\) −24.3392 −0.799837
\(927\) 0 0
\(928\) 24.0302 0.788829
\(929\) −31.0100 −1.01740 −0.508702 0.860943i \(-0.669875\pi\)
−0.508702 + 0.860943i \(0.669875\pi\)
\(930\) 0 0
\(931\) 3.43651 0.112627
\(932\) 32.6019 1.06791
\(933\) 0 0
\(934\) 27.8950 0.912752
\(935\) 0 0
\(936\) 0 0
\(937\) 44.0640 1.43951 0.719755 0.694229i \(-0.244254\pi\)
0.719755 + 0.694229i \(0.244254\pi\)
\(938\) −11.6046 −0.378904
\(939\) 0 0
\(940\) −8.08208 −0.263608
\(941\) −2.12056 −0.0691283 −0.0345642 0.999402i \(-0.511004\pi\)
−0.0345642 + 0.999402i \(0.511004\pi\)
\(942\) 0 0
\(943\) 7.01299 0.228374
\(944\) 0.744409 0.0242284
\(945\) 0 0
\(946\) 0 0
\(947\) −15.3247 −0.497985 −0.248993 0.968505i \(-0.580100\pi\)
−0.248993 + 0.968505i \(0.580100\pi\)
\(948\) 0 0
\(949\) 60.6620 1.96917
\(950\) −5.68626 −0.184487
\(951\) 0 0
\(952\) 19.9209 0.645641
\(953\) −31.7696 −1.02912 −0.514559 0.857455i \(-0.672045\pi\)
−0.514559 + 0.857455i \(0.672045\pi\)
\(954\) 0 0
\(955\) 1.21303 0.0392529
\(956\) 0.291091 0.00941454
\(957\) 0 0
\(958\) 34.2364 1.10613
\(959\) 3.44802 0.111342
\(960\) 0 0
\(961\) −20.0733 −0.647526
\(962\) −50.1390 −1.61655
\(963\) 0 0
\(964\) −15.2525 −0.491251
\(965\) −54.0421 −1.73968
\(966\) 0 0
\(967\) −4.71821 −0.151727 −0.0758637 0.997118i \(-0.524171\pi\)
−0.0758637 + 0.997118i \(0.524171\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 11.0353 0.354322
\(971\) −2.48946 −0.0798905 −0.0399452 0.999202i \(-0.512718\pi\)
−0.0399452 + 0.999202i \(0.512718\pi\)
\(972\) 0 0
\(973\) −16.6679 −0.534348
\(974\) −14.1859 −0.454547
\(975\) 0 0
\(976\) 0.407963 0.0130586
\(977\) 47.9903 1.53534 0.767672 0.640842i \(-0.221415\pi\)
0.767672 + 0.640842i \(0.221415\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 22.0185 0.703354
\(981\) 0 0
\(982\) 6.26308 0.199863
\(983\) −0.497137 −0.0158562 −0.00792811 0.999969i \(-0.502524\pi\)
−0.00792811 + 0.999969i \(0.502524\pi\)
\(984\) 0 0
\(985\) 68.7054 2.18914
\(986\) 18.4717 0.588258
\(987\) 0 0
\(988\) −4.85019 −0.154305
\(989\) −6.77848 −0.215543
\(990\) 0 0
\(991\) 56.7182 1.80171 0.900856 0.434118i \(-0.142940\pi\)
0.900856 + 0.434118i \(0.142940\pi\)
\(992\) −18.4490 −0.585755
\(993\) 0 0
\(994\) −6.67372 −0.211678
\(995\) −5.66878 −0.179712
\(996\) 0 0
\(997\) −51.1895 −1.62119 −0.810594 0.585609i \(-0.800856\pi\)
−0.810594 + 0.585609i \(0.800856\pi\)
\(998\) 22.0662 0.698492
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9801.2.a.bi.1.3 4
3.2 odd 2 9801.2.a.bl.1.2 4
9.4 even 3 1089.2.e.i.727.2 8
9.7 even 3 1089.2.e.i.364.2 8
11.10 odd 2 891.2.a.q.1.2 4
33.32 even 2 891.2.a.p.1.3 4
99.32 even 6 297.2.e.e.100.2 8
99.43 odd 6 99.2.e.e.67.3 yes 8
99.65 even 6 297.2.e.e.199.2 8
99.76 odd 6 99.2.e.e.34.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.e.34.3 8 99.76 odd 6
99.2.e.e.67.3 yes 8 99.43 odd 6
297.2.e.e.100.2 8 99.32 even 6
297.2.e.e.199.2 8 99.65 even 6
891.2.a.p.1.3 4 33.32 even 2
891.2.a.q.1.2 4 11.10 odd 2
1089.2.e.i.364.2 8 9.7 even 3
1089.2.e.i.727.2 8 9.4 even 3
9801.2.a.bi.1.3 4 1.1 even 1 trivial
9801.2.a.bl.1.2 4 3.2 odd 2