Properties

Label 985.2.a.g.1.4
Level $985$
Weight $2$
Character 985.1
Self dual yes
Analytic conductor $7.865$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [985,2,Mod(1,985)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(985, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("985.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.51786\) of defining polynomial
Character \(\chi\) \(=\) 985.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.51786 q^{2} -0.903960 q^{3} +0.303910 q^{4} -1.00000 q^{5} +1.37209 q^{6} -1.33147 q^{7} +2.57443 q^{8} -2.18286 q^{9} +1.51786 q^{10} -0.806560 q^{11} -0.274722 q^{12} -1.88783 q^{13} +2.02099 q^{14} +0.903960 q^{15} -4.51546 q^{16} +1.37538 q^{17} +3.31328 q^{18} -2.12082 q^{19} -0.303910 q^{20} +1.20360 q^{21} +1.22425 q^{22} -5.95716 q^{23} -2.32719 q^{24} +1.00000 q^{25} +2.86547 q^{26} +4.68510 q^{27} -0.404647 q^{28} -7.30354 q^{29} -1.37209 q^{30} +2.40299 q^{31} +1.70498 q^{32} +0.729098 q^{33} -2.08763 q^{34} +1.33147 q^{35} -0.663391 q^{36} +10.2938 q^{37} +3.21912 q^{38} +1.70652 q^{39} -2.57443 q^{40} -4.29376 q^{41} -1.82690 q^{42} -7.67260 q^{43} -0.245121 q^{44} +2.18286 q^{45} +9.04216 q^{46} +12.0285 q^{47} +4.08179 q^{48} -5.22718 q^{49} -1.51786 q^{50} -1.24329 q^{51} -0.573729 q^{52} +1.46853 q^{53} -7.11134 q^{54} +0.806560 q^{55} -3.42779 q^{56} +1.91714 q^{57} +11.0858 q^{58} +6.68418 q^{59} +0.274722 q^{60} -4.43447 q^{61} -3.64741 q^{62} +2.90641 q^{63} +6.44299 q^{64} +1.88783 q^{65} -1.10667 q^{66} -0.323212 q^{67} +0.417990 q^{68} +5.38504 q^{69} -2.02099 q^{70} +14.6128 q^{71} -5.61962 q^{72} +12.3306 q^{73} -15.6245 q^{74} -0.903960 q^{75} -0.644538 q^{76} +1.07391 q^{77} -2.59027 q^{78} -8.17908 q^{79} +4.51546 q^{80} +2.31343 q^{81} +6.51734 q^{82} +16.9689 q^{83} +0.365785 q^{84} -1.37538 q^{85} +11.6460 q^{86} +6.60211 q^{87} -2.07644 q^{88} +4.47219 q^{89} -3.31328 q^{90} +2.51359 q^{91} -1.81044 q^{92} -2.17220 q^{93} -18.2576 q^{94} +2.12082 q^{95} -1.54124 q^{96} +0.0885854 q^{97} +7.93415 q^{98} +1.76060 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 6 q^{2} + 5 q^{3} + 18 q^{4} - 17 q^{5} + 3 q^{6} + 7 q^{7} + 18 q^{8} + 22 q^{9} - 6 q^{10} + 7 q^{11} + 20 q^{12} + 3 q^{13} + 17 q^{14} - 5 q^{15} + 28 q^{16} + 6 q^{17} + 13 q^{18} - 23 q^{19}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.51786 −1.07329 −0.536646 0.843808i \(-0.680309\pi\)
−0.536646 + 0.843808i \(0.680309\pi\)
\(3\) −0.903960 −0.521902 −0.260951 0.965352i \(-0.584036\pi\)
−0.260951 + 0.965352i \(0.584036\pi\)
\(4\) 0.303910 0.151955
\(5\) −1.00000 −0.447214
\(6\) 1.37209 0.560153
\(7\) −1.33147 −0.503249 −0.251625 0.967825i \(-0.580965\pi\)
−0.251625 + 0.967825i \(0.580965\pi\)
\(8\) 2.57443 0.910200
\(9\) −2.18286 −0.727619
\(10\) 1.51786 0.479991
\(11\) −0.806560 −0.243187 −0.121594 0.992580i \(-0.538800\pi\)
−0.121594 + 0.992580i \(0.538800\pi\)
\(12\) −0.274722 −0.0793055
\(13\) −1.88783 −0.523589 −0.261795 0.965124i \(-0.584314\pi\)
−0.261795 + 0.965124i \(0.584314\pi\)
\(14\) 2.02099 0.540133
\(15\) 0.903960 0.233402
\(16\) −4.51546 −1.12886
\(17\) 1.37538 0.333578 0.166789 0.985993i \(-0.446660\pi\)
0.166789 + 0.985993i \(0.446660\pi\)
\(18\) 3.31328 0.780947
\(19\) −2.12082 −0.486550 −0.243275 0.969957i \(-0.578222\pi\)
−0.243275 + 0.969957i \(0.578222\pi\)
\(20\) −0.303910 −0.0679563
\(21\) 1.20360 0.262647
\(22\) 1.22425 0.261011
\(23\) −5.95716 −1.24215 −0.621077 0.783750i \(-0.713305\pi\)
−0.621077 + 0.783750i \(0.713305\pi\)
\(24\) −2.32719 −0.475035
\(25\) 1.00000 0.200000
\(26\) 2.86547 0.561964
\(27\) 4.68510 0.901647
\(28\) −0.404647 −0.0764712
\(29\) −7.30354 −1.35623 −0.678117 0.734954i \(-0.737204\pi\)
−0.678117 + 0.734954i \(0.737204\pi\)
\(30\) −1.37209 −0.250508
\(31\) 2.40299 0.431589 0.215795 0.976439i \(-0.430766\pi\)
0.215795 + 0.976439i \(0.430766\pi\)
\(32\) 1.70498 0.301401
\(33\) 0.729098 0.126920
\(34\) −2.08763 −0.358026
\(35\) 1.33147 0.225060
\(36\) −0.663391 −0.110565
\(37\) 10.2938 1.69228 0.846142 0.532957i \(-0.178919\pi\)
0.846142 + 0.532957i \(0.178919\pi\)
\(38\) 3.21912 0.522210
\(39\) 1.70652 0.273262
\(40\) −2.57443 −0.407054
\(41\) −4.29376 −0.670572 −0.335286 0.942116i \(-0.608833\pi\)
−0.335286 + 0.942116i \(0.608833\pi\)
\(42\) −1.82690 −0.281896
\(43\) −7.67260 −1.17006 −0.585030 0.811012i \(-0.698917\pi\)
−0.585030 + 0.811012i \(0.698917\pi\)
\(44\) −0.245121 −0.0369535
\(45\) 2.18286 0.325401
\(46\) 9.04216 1.33319
\(47\) 12.0285 1.75453 0.877267 0.480003i \(-0.159364\pi\)
0.877267 + 0.480003i \(0.159364\pi\)
\(48\) 4.08179 0.589156
\(49\) −5.22718 −0.746740
\(50\) −1.51786 −0.214658
\(51\) −1.24329 −0.174095
\(52\) −0.573729 −0.0795620
\(53\) 1.46853 0.201718 0.100859 0.994901i \(-0.467841\pi\)
0.100859 + 0.994901i \(0.467841\pi\)
\(54\) −7.11134 −0.967730
\(55\) 0.806560 0.108757
\(56\) −3.42779 −0.458057
\(57\) 1.91714 0.253931
\(58\) 11.0858 1.45563
\(59\) 6.68418 0.870206 0.435103 0.900381i \(-0.356712\pi\)
0.435103 + 0.900381i \(0.356712\pi\)
\(60\) 0.274722 0.0354665
\(61\) −4.43447 −0.567776 −0.283888 0.958857i \(-0.591624\pi\)
−0.283888 + 0.958857i \(0.591624\pi\)
\(62\) −3.64741 −0.463221
\(63\) 2.90641 0.366174
\(64\) 6.44299 0.805373
\(65\) 1.88783 0.234156
\(66\) −1.10667 −0.136222
\(67\) −0.323212 −0.0394866 −0.0197433 0.999805i \(-0.506285\pi\)
−0.0197433 + 0.999805i \(0.506285\pi\)
\(68\) 0.417990 0.0506888
\(69\) 5.38504 0.648282
\(70\) −2.02099 −0.241555
\(71\) 14.6128 1.73422 0.867108 0.498120i \(-0.165976\pi\)
0.867108 + 0.498120i \(0.165976\pi\)
\(72\) −5.61962 −0.662278
\(73\) 12.3306 1.44319 0.721593 0.692318i \(-0.243410\pi\)
0.721593 + 0.692318i \(0.243410\pi\)
\(74\) −15.6245 −1.81631
\(75\) −0.903960 −0.104380
\(76\) −0.644538 −0.0739336
\(77\) 1.07391 0.122384
\(78\) −2.59027 −0.293290
\(79\) −8.17908 −0.920219 −0.460109 0.887862i \(-0.652190\pi\)
−0.460109 + 0.887862i \(0.652190\pi\)
\(80\) 4.51546 0.504844
\(81\) 2.31343 0.257048
\(82\) 6.51734 0.719720
\(83\) 16.9689 1.86257 0.931287 0.364287i \(-0.118687\pi\)
0.931287 + 0.364287i \(0.118687\pi\)
\(84\) 0.365785 0.0399104
\(85\) −1.37538 −0.149181
\(86\) 11.6460 1.25582
\(87\) 6.60211 0.707821
\(88\) −2.07644 −0.221349
\(89\) 4.47219 0.474051 0.237025 0.971503i \(-0.423828\pi\)
0.237025 + 0.971503i \(0.423828\pi\)
\(90\) −3.31328 −0.349250
\(91\) 2.51359 0.263496
\(92\) −1.81044 −0.188751
\(93\) −2.17220 −0.225247
\(94\) −18.2576 −1.88313
\(95\) 2.12082 0.217592
\(96\) −1.54124 −0.157302
\(97\) 0.0885854 0.00899448 0.00449724 0.999990i \(-0.498568\pi\)
0.00449724 + 0.999990i \(0.498568\pi\)
\(98\) 7.93415 0.801470
\(99\) 1.76060 0.176947
\(100\) 0.303910 0.0303910
\(101\) −0.794584 −0.0790641 −0.0395320 0.999218i \(-0.512587\pi\)
−0.0395320 + 0.999218i \(0.512587\pi\)
\(102\) 1.88714 0.186855
\(103\) 0.305393 0.0300912 0.0150456 0.999887i \(-0.495211\pi\)
0.0150456 + 0.999887i \(0.495211\pi\)
\(104\) −4.86009 −0.476571
\(105\) −1.20360 −0.117459
\(106\) −2.22902 −0.216502
\(107\) 2.31112 0.223424 0.111712 0.993741i \(-0.464367\pi\)
0.111712 + 0.993741i \(0.464367\pi\)
\(108\) 1.42385 0.137010
\(109\) −0.836157 −0.0800893 −0.0400446 0.999198i \(-0.512750\pi\)
−0.0400446 + 0.999198i \(0.512750\pi\)
\(110\) −1.22425 −0.116727
\(111\) −9.30515 −0.883206
\(112\) 6.01221 0.568100
\(113\) 14.9830 1.40948 0.704742 0.709464i \(-0.251063\pi\)
0.704742 + 0.709464i \(0.251063\pi\)
\(114\) −2.90995 −0.272542
\(115\) 5.95716 0.555508
\(116\) −2.21962 −0.206086
\(117\) 4.12086 0.380973
\(118\) −10.1457 −0.933985
\(119\) −1.83128 −0.167873
\(120\) 2.32719 0.212442
\(121\) −10.3495 −0.940860
\(122\) 6.73092 0.609389
\(123\) 3.88139 0.349973
\(124\) 0.730291 0.0655821
\(125\) −1.00000 −0.0894427
\(126\) −4.41154 −0.393011
\(127\) −6.62133 −0.587548 −0.293774 0.955875i \(-0.594911\pi\)
−0.293774 + 0.955875i \(0.594911\pi\)
\(128\) −13.1895 −1.16580
\(129\) 6.93572 0.610656
\(130\) −2.86547 −0.251318
\(131\) 12.3464 1.07871 0.539357 0.842077i \(-0.318667\pi\)
0.539357 + 0.842077i \(0.318667\pi\)
\(132\) 0.221580 0.0192861
\(133\) 2.82381 0.244856
\(134\) 0.490592 0.0423807
\(135\) −4.68510 −0.403229
\(136\) 3.54082 0.303622
\(137\) 13.6905 1.16966 0.584830 0.811156i \(-0.301161\pi\)
0.584830 + 0.811156i \(0.301161\pi\)
\(138\) −8.17375 −0.695796
\(139\) −14.6545 −1.24298 −0.621488 0.783424i \(-0.713471\pi\)
−0.621488 + 0.783424i \(0.713471\pi\)
\(140\) 0.404647 0.0341989
\(141\) −10.8733 −0.915694
\(142\) −22.1802 −1.86132
\(143\) 1.52265 0.127330
\(144\) 9.85660 0.821383
\(145\) 7.30354 0.606526
\(146\) −18.7161 −1.54896
\(147\) 4.72516 0.389725
\(148\) 3.12837 0.257151
\(149\) 2.47047 0.202389 0.101195 0.994867i \(-0.467734\pi\)
0.101195 + 0.994867i \(0.467734\pi\)
\(150\) 1.37209 0.112031
\(151\) 15.0125 1.22170 0.610850 0.791746i \(-0.290828\pi\)
0.610850 + 0.791746i \(0.290828\pi\)
\(152\) −5.45991 −0.442857
\(153\) −3.00225 −0.242717
\(154\) −1.63005 −0.131353
\(155\) −2.40299 −0.193013
\(156\) 0.518629 0.0415235
\(157\) 10.7690 0.859457 0.429729 0.902958i \(-0.358609\pi\)
0.429729 + 0.902958i \(0.358609\pi\)
\(158\) 12.4147 0.987663
\(159\) −1.32749 −0.105277
\(160\) −1.70498 −0.134791
\(161\) 7.93179 0.625113
\(162\) −3.51147 −0.275887
\(163\) −5.02583 −0.393653 −0.196827 0.980438i \(-0.563064\pi\)
−0.196827 + 0.980438i \(0.563064\pi\)
\(164\) −1.30491 −0.101897
\(165\) −0.729098 −0.0567602
\(166\) −25.7564 −1.99908
\(167\) 1.90454 0.147378 0.0736890 0.997281i \(-0.476523\pi\)
0.0736890 + 0.997281i \(0.476523\pi\)
\(168\) 3.09858 0.239061
\(169\) −9.43610 −0.725854
\(170\) 2.08763 0.160114
\(171\) 4.62945 0.354023
\(172\) −2.33178 −0.177796
\(173\) 4.80845 0.365580 0.182790 0.983152i \(-0.441487\pi\)
0.182790 + 0.983152i \(0.441487\pi\)
\(174\) −10.0211 −0.759698
\(175\) −1.33147 −0.100650
\(176\) 3.64199 0.274525
\(177\) −6.04223 −0.454162
\(178\) −6.78817 −0.508795
\(179\) 14.8504 1.10997 0.554985 0.831861i \(-0.312724\pi\)
0.554985 + 0.831861i \(0.312724\pi\)
\(180\) 0.663391 0.0494463
\(181\) −16.8196 −1.25019 −0.625097 0.780547i \(-0.714941\pi\)
−0.625097 + 0.780547i \(0.714941\pi\)
\(182\) −3.81529 −0.282808
\(183\) 4.00858 0.296323
\(184\) −15.3363 −1.13061
\(185\) −10.2938 −0.756813
\(186\) 3.29711 0.241756
\(187\) −1.10932 −0.0811218
\(188\) 3.65557 0.266610
\(189\) −6.23807 −0.453753
\(190\) −3.21912 −0.233539
\(191\) 4.07306 0.294717 0.147358 0.989083i \(-0.452923\pi\)
0.147358 + 0.989083i \(0.452923\pi\)
\(192\) −5.82420 −0.420326
\(193\) −19.6778 −1.41644 −0.708219 0.705993i \(-0.750501\pi\)
−0.708219 + 0.705993i \(0.750501\pi\)
\(194\) −0.134461 −0.00965370
\(195\) −1.70652 −0.122207
\(196\) −1.58859 −0.113471
\(197\) 1.00000 0.0712470
\(198\) −2.67236 −0.189916
\(199\) 1.05752 0.0749658 0.0374829 0.999297i \(-0.488066\pi\)
0.0374829 + 0.999297i \(0.488066\pi\)
\(200\) 2.57443 0.182040
\(201\) 0.292171 0.0206081
\(202\) 1.20607 0.0848588
\(203\) 9.72447 0.682524
\(204\) −0.377847 −0.0264546
\(205\) 4.29376 0.299889
\(206\) −0.463544 −0.0322967
\(207\) 13.0036 0.903814
\(208\) 8.52441 0.591062
\(209\) 1.71057 0.118323
\(210\) 1.82690 0.126068
\(211\) −6.51731 −0.448670 −0.224335 0.974512i \(-0.572021\pi\)
−0.224335 + 0.974512i \(0.572021\pi\)
\(212\) 0.446299 0.0306520
\(213\) −13.2094 −0.905090
\(214\) −3.50796 −0.239799
\(215\) 7.67260 0.523267
\(216\) 12.0615 0.820679
\(217\) −3.19951 −0.217197
\(218\) 1.26917 0.0859592
\(219\) −11.1464 −0.753201
\(220\) 0.245121 0.0165261
\(221\) −2.59648 −0.174658
\(222\) 14.1240 0.947938
\(223\) −16.8930 −1.13124 −0.565618 0.824667i \(-0.691362\pi\)
−0.565618 + 0.824667i \(0.691362\pi\)
\(224\) −2.27014 −0.151680
\(225\) −2.18286 −0.145524
\(226\) −22.7422 −1.51279
\(227\) −16.2143 −1.07618 −0.538091 0.842887i \(-0.680854\pi\)
−0.538091 + 0.842887i \(0.680854\pi\)
\(228\) 0.582637 0.0385861
\(229\) 10.8362 0.716076 0.358038 0.933707i \(-0.383446\pi\)
0.358038 + 0.933707i \(0.383446\pi\)
\(230\) −9.04216 −0.596222
\(231\) −0.970774 −0.0638722
\(232\) −18.8025 −1.23444
\(233\) −19.5258 −1.27918 −0.639588 0.768718i \(-0.720895\pi\)
−0.639588 + 0.768718i \(0.720895\pi\)
\(234\) −6.25490 −0.408896
\(235\) −12.0285 −0.784652
\(236\) 2.03139 0.132232
\(237\) 7.39356 0.480264
\(238\) 2.77963 0.180176
\(239\) −12.4920 −0.808041 −0.404021 0.914750i \(-0.632388\pi\)
−0.404021 + 0.914750i \(0.632388\pi\)
\(240\) −4.08179 −0.263479
\(241\) 15.4974 0.998274 0.499137 0.866523i \(-0.333650\pi\)
0.499137 + 0.866523i \(0.333650\pi\)
\(242\) 15.7091 1.00982
\(243\) −16.1465 −1.03580
\(244\) −1.34768 −0.0862763
\(245\) 5.22718 0.333952
\(246\) −5.89141 −0.375623
\(247\) 4.00375 0.254752
\(248\) 6.18633 0.392832
\(249\) −15.3392 −0.972080
\(250\) 1.51786 0.0959981
\(251\) −5.94720 −0.375384 −0.187692 0.982228i \(-0.560101\pi\)
−0.187692 + 0.982228i \(0.560101\pi\)
\(252\) 0.883287 0.0556418
\(253\) 4.80481 0.302076
\(254\) 10.0503 0.630610
\(255\) 1.24329 0.0778576
\(256\) 7.13395 0.445872
\(257\) −22.5011 −1.40358 −0.701789 0.712384i \(-0.747615\pi\)
−0.701789 + 0.712384i \(0.747615\pi\)
\(258\) −10.5275 −0.655412
\(259\) −13.7059 −0.851641
\(260\) 0.573729 0.0355812
\(261\) 15.9426 0.986821
\(262\) −18.7402 −1.15777
\(263\) 12.3109 0.759120 0.379560 0.925167i \(-0.376075\pi\)
0.379560 + 0.925167i \(0.376075\pi\)
\(264\) 1.87702 0.115522
\(265\) −1.46853 −0.0902108
\(266\) −4.28616 −0.262802
\(267\) −4.04268 −0.247408
\(268\) −0.0982273 −0.00600018
\(269\) −16.8702 −1.02860 −0.514298 0.857611i \(-0.671948\pi\)
−0.514298 + 0.857611i \(0.671948\pi\)
\(270\) 7.11134 0.432782
\(271\) 31.4441 1.91010 0.955048 0.296451i \(-0.0958032\pi\)
0.955048 + 0.296451i \(0.0958032\pi\)
\(272\) −6.21046 −0.376564
\(273\) −2.27219 −0.137519
\(274\) −20.7803 −1.25539
\(275\) −0.806560 −0.0486374
\(276\) 1.63656 0.0985096
\(277\) 9.07483 0.545254 0.272627 0.962120i \(-0.412108\pi\)
0.272627 + 0.962120i \(0.412108\pi\)
\(278\) 22.2435 1.33407
\(279\) −5.24537 −0.314032
\(280\) 3.42779 0.204849
\(281\) −15.4125 −0.919435 −0.459717 0.888065i \(-0.652049\pi\)
−0.459717 + 0.888065i \(0.652049\pi\)
\(282\) 16.5041 0.982807
\(283\) 19.1311 1.13722 0.568612 0.822606i \(-0.307481\pi\)
0.568612 + 0.822606i \(0.307481\pi\)
\(284\) 4.44096 0.263523
\(285\) −1.91714 −0.113561
\(286\) −2.31117 −0.136662
\(287\) 5.71702 0.337465
\(288\) −3.72173 −0.219305
\(289\) −15.1083 −0.888726
\(290\) −11.0858 −0.650980
\(291\) −0.0800777 −0.00469424
\(292\) 3.74738 0.219299
\(293\) 2.52011 0.147226 0.0736132 0.997287i \(-0.476547\pi\)
0.0736132 + 0.997287i \(0.476547\pi\)
\(294\) −7.17215 −0.418289
\(295\) −6.68418 −0.389168
\(296\) 26.5006 1.54032
\(297\) −3.77881 −0.219269
\(298\) −3.74984 −0.217223
\(299\) 11.2461 0.650379
\(300\) −0.274722 −0.0158611
\(301\) 10.2158 0.588832
\(302\) −22.7869 −1.31124
\(303\) 0.718273 0.0412637
\(304\) 9.57648 0.549249
\(305\) 4.43447 0.253917
\(306\) 4.55700 0.260507
\(307\) −23.7851 −1.35749 −0.678743 0.734376i \(-0.737475\pi\)
−0.678743 + 0.734376i \(0.737475\pi\)
\(308\) 0.326372 0.0185968
\(309\) −0.276063 −0.0157047
\(310\) 3.64741 0.207159
\(311\) 6.99938 0.396898 0.198449 0.980111i \(-0.436410\pi\)
0.198449 + 0.980111i \(0.436410\pi\)
\(312\) 4.39333 0.248723
\(313\) 8.97400 0.507240 0.253620 0.967304i \(-0.418379\pi\)
0.253620 + 0.967304i \(0.418379\pi\)
\(314\) −16.3458 −0.922448
\(315\) −2.90641 −0.163758
\(316\) −2.48570 −0.139832
\(317\) −21.7471 −1.22144 −0.610719 0.791847i \(-0.709120\pi\)
−0.610719 + 0.791847i \(0.709120\pi\)
\(318\) 2.01495 0.112993
\(319\) 5.89075 0.329819
\(320\) −6.44299 −0.360174
\(321\) −2.08916 −0.116605
\(322\) −12.0394 −0.670929
\(323\) −2.91693 −0.162302
\(324\) 0.703073 0.0390596
\(325\) −1.88783 −0.104718
\(326\) 7.62852 0.422505
\(327\) 0.755852 0.0417987
\(328\) −11.0540 −0.610355
\(329\) −16.0156 −0.882968
\(330\) 1.10667 0.0609203
\(331\) 29.5759 1.62564 0.812820 0.582515i \(-0.197931\pi\)
0.812820 + 0.582515i \(0.197931\pi\)
\(332\) 5.15700 0.283027
\(333\) −22.4698 −1.23134
\(334\) −2.89084 −0.158180
\(335\) 0.323212 0.0176590
\(336\) −5.43480 −0.296492
\(337\) 19.0248 1.03635 0.518173 0.855276i \(-0.326612\pi\)
0.518173 + 0.855276i \(0.326612\pi\)
\(338\) 14.3227 0.779053
\(339\) −13.5441 −0.735612
\(340\) −0.417990 −0.0226687
\(341\) −1.93815 −0.104957
\(342\) −7.02687 −0.379969
\(343\) 16.2802 0.879046
\(344\) −19.7526 −1.06499
\(345\) −5.38504 −0.289921
\(346\) −7.29857 −0.392374
\(347\) 5.49276 0.294867 0.147434 0.989072i \(-0.452899\pi\)
0.147434 + 0.989072i \(0.452899\pi\)
\(348\) 2.00645 0.107557
\(349\) −18.5259 −0.991667 −0.495834 0.868418i \(-0.665137\pi\)
−0.495834 + 0.868418i \(0.665137\pi\)
\(350\) 2.02099 0.108027
\(351\) −8.84466 −0.472093
\(352\) −1.37517 −0.0732969
\(353\) −6.11767 −0.325610 −0.162805 0.986658i \(-0.552054\pi\)
−0.162805 + 0.986658i \(0.552054\pi\)
\(354\) 9.17129 0.487448
\(355\) −14.6128 −0.775565
\(356\) 1.35914 0.0720343
\(357\) 1.65540 0.0876131
\(358\) −22.5409 −1.19132
\(359\) 25.8526 1.36445 0.682224 0.731143i \(-0.261013\pi\)
0.682224 + 0.731143i \(0.261013\pi\)
\(360\) 5.61962 0.296180
\(361\) −14.5021 −0.763270
\(362\) 25.5299 1.34182
\(363\) 9.35550 0.491036
\(364\) 0.763905 0.0400395
\(365\) −12.3306 −0.645412
\(366\) −6.08448 −0.318041
\(367\) 36.7172 1.91662 0.958312 0.285724i \(-0.0922341\pi\)
0.958312 + 0.285724i \(0.0922341\pi\)
\(368\) 26.8993 1.40222
\(369\) 9.37266 0.487921
\(370\) 15.6245 0.812281
\(371\) −1.95530 −0.101514
\(372\) −0.660154 −0.0342274
\(373\) 12.1980 0.631589 0.315795 0.948828i \(-0.397729\pi\)
0.315795 + 0.948828i \(0.397729\pi\)
\(374\) 1.68380 0.0870674
\(375\) 0.903960 0.0466803
\(376\) 30.9665 1.59698
\(377\) 13.7878 0.710110
\(378\) 9.46855 0.487009
\(379\) 27.8766 1.43192 0.715962 0.698139i \(-0.245988\pi\)
0.715962 + 0.698139i \(0.245988\pi\)
\(380\) 0.644538 0.0330641
\(381\) 5.98542 0.306642
\(382\) −6.18236 −0.316317
\(383\) 4.14289 0.211692 0.105846 0.994383i \(-0.466245\pi\)
0.105846 + 0.994383i \(0.466245\pi\)
\(384\) 11.9228 0.608434
\(385\) −1.07391 −0.0547316
\(386\) 29.8682 1.52025
\(387\) 16.7482 0.851357
\(388\) 0.0269220 0.00136676
\(389\) 37.4707 1.89984 0.949921 0.312492i \(-0.101164\pi\)
0.949921 + 0.312492i \(0.101164\pi\)
\(390\) 2.59027 0.131163
\(391\) −8.19334 −0.414355
\(392\) −13.4570 −0.679683
\(393\) −11.1607 −0.562982
\(394\) −1.51786 −0.0764689
\(395\) 8.17908 0.411534
\(396\) 0.535065 0.0268880
\(397\) −5.12435 −0.257184 −0.128592 0.991698i \(-0.541046\pi\)
−0.128592 + 0.991698i \(0.541046\pi\)
\(398\) −1.60517 −0.0804601
\(399\) −2.55261 −0.127791
\(400\) −4.51546 −0.225773
\(401\) 15.4588 0.771974 0.385987 0.922504i \(-0.373861\pi\)
0.385987 + 0.922504i \(0.373861\pi\)
\(402\) −0.443475 −0.0221185
\(403\) −4.53643 −0.225976
\(404\) −0.241482 −0.0120142
\(405\) −2.31343 −0.114955
\(406\) −14.7604 −0.732547
\(407\) −8.30254 −0.411542
\(408\) −3.20076 −0.158461
\(409\) 3.23937 0.160177 0.0800884 0.996788i \(-0.474480\pi\)
0.0800884 + 0.996788i \(0.474480\pi\)
\(410\) −6.51734 −0.321868
\(411\) −12.3757 −0.610448
\(412\) 0.0928118 0.00457251
\(413\) −8.89980 −0.437931
\(414\) −19.7377 −0.970056
\(415\) −16.9689 −0.832968
\(416\) −3.21871 −0.157810
\(417\) 13.2470 0.648711
\(418\) −2.59641 −0.126995
\(419\) −5.63874 −0.275470 −0.137735 0.990469i \(-0.543982\pi\)
−0.137735 + 0.990469i \(0.543982\pi\)
\(420\) −0.365785 −0.0178485
\(421\) −26.4776 −1.29044 −0.645219 0.763997i \(-0.723234\pi\)
−0.645219 + 0.763997i \(0.723234\pi\)
\(422\) 9.89239 0.481554
\(423\) −26.2564 −1.27663
\(424\) 3.78062 0.183603
\(425\) 1.37538 0.0667156
\(426\) 20.0500 0.971426
\(427\) 5.90437 0.285733
\(428\) 0.702371 0.0339504
\(429\) −1.37641 −0.0664538
\(430\) −11.6460 −0.561618
\(431\) 1.87412 0.0902732 0.0451366 0.998981i \(-0.485628\pi\)
0.0451366 + 0.998981i \(0.485628\pi\)
\(432\) −21.1554 −1.01784
\(433\) −17.8045 −0.855631 −0.427815 0.903866i \(-0.640717\pi\)
−0.427815 + 0.903866i \(0.640717\pi\)
\(434\) 4.85642 0.233116
\(435\) −6.60211 −0.316547
\(436\) −0.254116 −0.0121700
\(437\) 12.6341 0.604370
\(438\) 16.9187 0.808404
\(439\) 18.6000 0.887730 0.443865 0.896094i \(-0.353607\pi\)
0.443865 + 0.896094i \(0.353607\pi\)
\(440\) 2.07644 0.0989902
\(441\) 11.4102 0.543342
\(442\) 3.94110 0.187459
\(443\) 19.5292 0.927863 0.463931 0.885871i \(-0.346438\pi\)
0.463931 + 0.885871i \(0.346438\pi\)
\(444\) −2.82793 −0.134207
\(445\) −4.47219 −0.212002
\(446\) 25.6412 1.21415
\(447\) −2.23321 −0.105627
\(448\) −8.57866 −0.405303
\(449\) 28.6675 1.35290 0.676452 0.736487i \(-0.263517\pi\)
0.676452 + 0.736487i \(0.263517\pi\)
\(450\) 3.31328 0.156189
\(451\) 3.46317 0.163075
\(452\) 4.55349 0.214178
\(453\) −13.5707 −0.637607
\(454\) 24.6111 1.15506
\(455\) −2.51359 −0.117839
\(456\) 4.93554 0.231128
\(457\) −30.9029 −1.44558 −0.722789 0.691069i \(-0.757140\pi\)
−0.722789 + 0.691069i \(0.757140\pi\)
\(458\) −16.4479 −0.768559
\(459\) 6.44377 0.300769
\(460\) 1.81044 0.0844122
\(461\) 22.1399 1.03116 0.515578 0.856843i \(-0.327577\pi\)
0.515578 + 0.856843i \(0.327577\pi\)
\(462\) 1.47350 0.0685535
\(463\) 32.5114 1.51093 0.755467 0.655186i \(-0.227410\pi\)
0.755467 + 0.655186i \(0.227410\pi\)
\(464\) 32.9788 1.53100
\(465\) 2.17220 0.100734
\(466\) 29.6375 1.37293
\(467\) −23.5719 −1.09078 −0.545388 0.838184i \(-0.683618\pi\)
−0.545388 + 0.838184i \(0.683618\pi\)
\(468\) 1.25237 0.0578908
\(469\) 0.430348 0.0198716
\(470\) 18.2576 0.842160
\(471\) −9.73472 −0.448552
\(472\) 17.2080 0.792061
\(473\) 6.18841 0.284543
\(474\) −11.2224 −0.515463
\(475\) −2.12082 −0.0973099
\(476\) −0.556543 −0.0255091
\(477\) −3.20558 −0.146773
\(478\) 18.9612 0.867264
\(479\) −14.9314 −0.682233 −0.341116 0.940021i \(-0.610805\pi\)
−0.341116 + 0.940021i \(0.610805\pi\)
\(480\) 1.54124 0.0703475
\(481\) −19.4329 −0.886062
\(482\) −23.5229 −1.07144
\(483\) −7.17003 −0.326247
\(484\) −3.14530 −0.142968
\(485\) −0.0885854 −0.00402246
\(486\) 24.5082 1.11172
\(487\) 41.7196 1.89049 0.945247 0.326354i \(-0.105820\pi\)
0.945247 + 0.326354i \(0.105820\pi\)
\(488\) −11.4163 −0.516789
\(489\) 4.54315 0.205448
\(490\) −7.93415 −0.358428
\(491\) 27.0022 1.21859 0.609296 0.792943i \(-0.291452\pi\)
0.609296 + 0.792943i \(0.291452\pi\)
\(492\) 1.17959 0.0531801
\(493\) −10.0451 −0.452410
\(494\) −6.07714 −0.273423
\(495\) −1.76060 −0.0791333
\(496\) −10.8506 −0.487206
\(497\) −19.4565 −0.872743
\(498\) 23.2828 1.04333
\(499\) −22.4640 −1.00563 −0.502814 0.864395i \(-0.667702\pi\)
−0.502814 + 0.864395i \(0.667702\pi\)
\(500\) −0.303910 −0.0135913
\(501\) −1.72163 −0.0769168
\(502\) 9.02704 0.402897
\(503\) 26.0943 1.16349 0.581743 0.813373i \(-0.302371\pi\)
0.581743 + 0.813373i \(0.302371\pi\)
\(504\) 7.48236 0.333291
\(505\) 0.794584 0.0353585
\(506\) −7.29304 −0.324215
\(507\) 8.52986 0.378824
\(508\) −2.01229 −0.0892808
\(509\) −36.2219 −1.60551 −0.802753 0.596312i \(-0.796632\pi\)
−0.802753 + 0.596312i \(0.796632\pi\)
\(510\) −1.88714 −0.0835639
\(511\) −16.4178 −0.726282
\(512\) 15.5507 0.687251
\(513\) −9.93625 −0.438696
\(514\) 34.1536 1.50645
\(515\) −0.305393 −0.0134572
\(516\) 2.10783 0.0927922
\(517\) −9.70169 −0.426680
\(518\) 20.8036 0.914059
\(519\) −4.34665 −0.190797
\(520\) 4.86009 0.213129
\(521\) 23.5520 1.03183 0.515916 0.856639i \(-0.327452\pi\)
0.515916 + 0.856639i \(0.327452\pi\)
\(522\) −24.1987 −1.05915
\(523\) 28.2491 1.23525 0.617623 0.786474i \(-0.288096\pi\)
0.617623 + 0.786474i \(0.288096\pi\)
\(524\) 3.75220 0.163916
\(525\) 1.20360 0.0525293
\(526\) −18.6862 −0.814757
\(527\) 3.30501 0.143969
\(528\) −3.29221 −0.143275
\(529\) 12.4878 0.542947
\(530\) 2.22902 0.0968225
\(531\) −14.5906 −0.633178
\(532\) 0.858184 0.0372070
\(533\) 8.10588 0.351105
\(534\) 6.13623 0.265541
\(535\) −2.31112 −0.0999183
\(536\) −0.832088 −0.0359407
\(537\) −13.4242 −0.579295
\(538\) 25.6067 1.10398
\(539\) 4.21604 0.181598
\(540\) −1.42385 −0.0612726
\(541\) −33.1032 −1.42322 −0.711609 0.702576i \(-0.752033\pi\)
−0.711609 + 0.702576i \(0.752033\pi\)
\(542\) −47.7279 −2.05009
\(543\) 15.2043 0.652478
\(544\) 2.34499 0.100541
\(545\) 0.836157 0.0358170
\(546\) 3.44887 0.147598
\(547\) 25.8029 1.10325 0.551626 0.834092i \(-0.314008\pi\)
0.551626 + 0.834092i \(0.314008\pi\)
\(548\) 4.16068 0.177736
\(549\) 9.67981 0.413124
\(550\) 1.22425 0.0522021
\(551\) 15.4895 0.659875
\(552\) 13.8634 0.590066
\(553\) 10.8902 0.463099
\(554\) −13.7744 −0.585216
\(555\) 9.30515 0.394982
\(556\) −4.45363 −0.188876
\(557\) 12.1833 0.516223 0.258111 0.966115i \(-0.416900\pi\)
0.258111 + 0.966115i \(0.416900\pi\)
\(558\) 7.96176 0.337048
\(559\) 14.4845 0.612631
\(560\) −6.01221 −0.254062
\(561\) 1.00278 0.0423376
\(562\) 23.3941 0.986822
\(563\) −7.00996 −0.295434 −0.147717 0.989030i \(-0.547193\pi\)
−0.147717 + 0.989030i \(0.547193\pi\)
\(564\) −3.30449 −0.139144
\(565\) −14.9830 −0.630340
\(566\) −29.0383 −1.22057
\(567\) −3.08027 −0.129359
\(568\) 37.6196 1.57848
\(569\) 12.3333 0.517038 0.258519 0.966006i \(-0.416766\pi\)
0.258519 + 0.966006i \(0.416766\pi\)
\(570\) 2.90995 0.121885
\(571\) −31.8611 −1.33334 −0.666672 0.745351i \(-0.732282\pi\)
−0.666672 + 0.745351i \(0.732282\pi\)
\(572\) 0.462747 0.0193484
\(573\) −3.68189 −0.153813
\(574\) −8.67766 −0.362198
\(575\) −5.95716 −0.248431
\(576\) −14.0641 −0.586005
\(577\) 19.3870 0.807092 0.403546 0.914959i \(-0.367777\pi\)
0.403546 + 0.914959i \(0.367777\pi\)
\(578\) 22.9324 0.953862
\(579\) 17.7879 0.739242
\(580\) 2.21962 0.0921646
\(581\) −22.5936 −0.937338
\(582\) 0.121547 0.00503828
\(583\) −1.18445 −0.0490551
\(584\) 31.7443 1.31359
\(585\) −4.12086 −0.170377
\(586\) −3.82518 −0.158017
\(587\) −12.4958 −0.515758 −0.257879 0.966177i \(-0.583024\pi\)
−0.257879 + 0.966177i \(0.583024\pi\)
\(588\) 1.43602 0.0592206
\(589\) −5.09630 −0.209990
\(590\) 10.1457 0.417691
\(591\) −0.903960 −0.0371840
\(592\) −46.4811 −1.91036
\(593\) 12.3522 0.507244 0.253622 0.967303i \(-0.418378\pi\)
0.253622 + 0.967303i \(0.418378\pi\)
\(594\) 5.73572 0.235339
\(595\) 1.83128 0.0750750
\(596\) 0.750801 0.0307540
\(597\) −0.955958 −0.0391248
\(598\) −17.0700 −0.698046
\(599\) 19.2089 0.784854 0.392427 0.919783i \(-0.371636\pi\)
0.392427 + 0.919783i \(0.371636\pi\)
\(600\) −2.32719 −0.0950069
\(601\) −1.12280 −0.0458001 −0.0229001 0.999738i \(-0.507290\pi\)
−0.0229001 + 0.999738i \(0.507290\pi\)
\(602\) −15.5063 −0.631988
\(603\) 0.705525 0.0287312
\(604\) 4.56244 0.185643
\(605\) 10.3495 0.420765
\(606\) −1.09024 −0.0442880
\(607\) 2.93054 0.118947 0.0594736 0.998230i \(-0.481058\pi\)
0.0594736 + 0.998230i \(0.481058\pi\)
\(608\) −3.61596 −0.146647
\(609\) −8.79053 −0.356210
\(610\) −6.73092 −0.272527
\(611\) −22.7077 −0.918656
\(612\) −0.912413 −0.0368821
\(613\) −44.9751 −1.81653 −0.908264 0.418398i \(-0.862592\pi\)
−0.908264 + 0.418398i \(0.862592\pi\)
\(614\) 36.1025 1.45698
\(615\) −3.88139 −0.156513
\(616\) 2.76472 0.111394
\(617\) 48.0319 1.93369 0.966846 0.255359i \(-0.0821938\pi\)
0.966846 + 0.255359i \(0.0821938\pi\)
\(618\) 0.419025 0.0168557
\(619\) −40.2362 −1.61723 −0.808615 0.588338i \(-0.799783\pi\)
−0.808615 + 0.588338i \(0.799783\pi\)
\(620\) −0.730291 −0.0293292
\(621\) −27.9099 −1.11998
\(622\) −10.6241 −0.425988
\(623\) −5.95459 −0.238566
\(624\) −7.70573 −0.308476
\(625\) 1.00000 0.0400000
\(626\) −13.6213 −0.544417
\(627\) −1.54629 −0.0617527
\(628\) 3.27280 0.130599
\(629\) 14.1578 0.564509
\(630\) 4.41154 0.175760
\(631\) −14.0981 −0.561238 −0.280619 0.959819i \(-0.590540\pi\)
−0.280619 + 0.959819i \(0.590540\pi\)
\(632\) −21.0565 −0.837583
\(633\) 5.89139 0.234162
\(634\) 33.0091 1.31096
\(635\) 6.62133 0.262759
\(636\) −0.403437 −0.0159973
\(637\) 9.86802 0.390985
\(638\) −8.94135 −0.353991
\(639\) −31.8976 −1.26185
\(640\) 13.1895 0.521362
\(641\) −25.3926 −1.00295 −0.501474 0.865173i \(-0.667209\pi\)
−0.501474 + 0.865173i \(0.667209\pi\)
\(642\) 3.17106 0.125152
\(643\) −32.3660 −1.27639 −0.638195 0.769875i \(-0.720319\pi\)
−0.638195 + 0.769875i \(0.720319\pi\)
\(644\) 2.41055 0.0949890
\(645\) −6.93572 −0.273094
\(646\) 4.42750 0.174198
\(647\) −28.5573 −1.12270 −0.561352 0.827577i \(-0.689719\pi\)
−0.561352 + 0.827577i \(0.689719\pi\)
\(648\) 5.95577 0.233965
\(649\) −5.39119 −0.211623
\(650\) 2.86547 0.112393
\(651\) 2.89223 0.113355
\(652\) −1.52740 −0.0598175
\(653\) 0.634409 0.0248263 0.0124132 0.999923i \(-0.496049\pi\)
0.0124132 + 0.999923i \(0.496049\pi\)
\(654\) −1.14728 −0.0448622
\(655\) −12.3464 −0.482415
\(656\) 19.3883 0.756985
\(657\) −26.9159 −1.05009
\(658\) 24.3095 0.947682
\(659\) 29.7068 1.15721 0.578606 0.815607i \(-0.303597\pi\)
0.578606 + 0.815607i \(0.303597\pi\)
\(660\) −0.221580 −0.00862499
\(661\) 18.8224 0.732108 0.366054 0.930594i \(-0.380709\pi\)
0.366054 + 0.930594i \(0.380709\pi\)
\(662\) −44.8922 −1.74479
\(663\) 2.34711 0.0911542
\(664\) 43.6852 1.69531
\(665\) −2.82381 −0.109503
\(666\) 34.1061 1.32158
\(667\) 43.5084 1.68465
\(668\) 0.578809 0.0223948
\(669\) 15.2706 0.590394
\(670\) −0.490592 −0.0189532
\(671\) 3.57667 0.138076
\(672\) 2.05211 0.0791620
\(673\) −33.2858 −1.28307 −0.641537 0.767092i \(-0.721703\pi\)
−0.641537 + 0.767092i \(0.721703\pi\)
\(674\) −28.8770 −1.11230
\(675\) 4.68510 0.180329
\(676\) −2.86772 −0.110297
\(677\) −48.2704 −1.85518 −0.927590 0.373599i \(-0.878124\pi\)
−0.927590 + 0.373599i \(0.878124\pi\)
\(678\) 20.5580 0.789526
\(679\) −0.117949 −0.00452647
\(680\) −3.54082 −0.135784
\(681\) 14.6571 0.561661
\(682\) 2.94185 0.112649
\(683\) 12.6365 0.483521 0.241760 0.970336i \(-0.422275\pi\)
0.241760 + 0.970336i \(0.422275\pi\)
\(684\) 1.40693 0.0537954
\(685\) −13.6905 −0.523088
\(686\) −24.7110 −0.943472
\(687\) −9.79549 −0.373721
\(688\) 34.6453 1.32084
\(689\) −2.77233 −0.105617
\(690\) 8.17375 0.311169
\(691\) 35.8710 1.36460 0.682298 0.731074i \(-0.260981\pi\)
0.682298 + 0.731074i \(0.260981\pi\)
\(692\) 1.46133 0.0555516
\(693\) −2.34420 −0.0890486
\(694\) −8.33727 −0.316478
\(695\) 14.6545 0.555875
\(696\) 16.9967 0.644258
\(697\) −5.90554 −0.223688
\(698\) 28.1197 1.06435
\(699\) 17.6505 0.667604
\(700\) −0.404647 −0.0152942
\(701\) −27.7577 −1.04839 −0.524197 0.851597i \(-0.675635\pi\)
−0.524197 + 0.851597i \(0.675635\pi\)
\(702\) 13.4250 0.506693
\(703\) −21.8312 −0.823380
\(704\) −5.19666 −0.195856
\(705\) 10.8733 0.409511
\(706\) 9.28578 0.349475
\(707\) 1.05797 0.0397889
\(708\) −1.83629 −0.0690121
\(709\) −21.2316 −0.797369 −0.398684 0.917088i \(-0.630533\pi\)
−0.398684 + 0.917088i \(0.630533\pi\)
\(710\) 22.1802 0.832407
\(711\) 17.8538 0.669568
\(712\) 11.5133 0.431481
\(713\) −14.3150 −0.536100
\(714\) −2.51267 −0.0940344
\(715\) −1.52265 −0.0569438
\(716\) 4.51317 0.168665
\(717\) 11.2923 0.421718
\(718\) −39.2407 −1.46445
\(719\) 17.0121 0.634443 0.317222 0.948351i \(-0.397250\pi\)
0.317222 + 0.948351i \(0.397250\pi\)
\(720\) −9.85660 −0.367334
\(721\) −0.406622 −0.0151434
\(722\) 22.0122 0.819211
\(723\) −14.0090 −0.521001
\(724\) −5.11165 −0.189973
\(725\) −7.30354 −0.271247
\(726\) −14.2004 −0.527025
\(727\) −25.6783 −0.952356 −0.476178 0.879349i \(-0.657978\pi\)
−0.476178 + 0.879349i \(0.657978\pi\)
\(728\) 6.47107 0.239834
\(729\) 7.65554 0.283538
\(730\) 18.7161 0.692716
\(731\) −10.5527 −0.390306
\(732\) 1.21825 0.0450277
\(733\) 17.6235 0.650938 0.325469 0.945553i \(-0.394478\pi\)
0.325469 + 0.945553i \(0.394478\pi\)
\(734\) −55.7317 −2.05710
\(735\) −4.72516 −0.174290
\(736\) −10.1569 −0.374387
\(737\) 0.260690 0.00960264
\(738\) −14.2264 −0.523681
\(739\) 21.6771 0.797405 0.398702 0.917080i \(-0.369461\pi\)
0.398702 + 0.917080i \(0.369461\pi\)
\(740\) −3.12837 −0.115001
\(741\) −3.61923 −0.132956
\(742\) 2.96788 0.108954
\(743\) −0.582645 −0.0213752 −0.0106876 0.999943i \(-0.503402\pi\)
−0.0106876 + 0.999943i \(0.503402\pi\)
\(744\) −5.59220 −0.205020
\(745\) −2.47047 −0.0905112
\(746\) −18.5149 −0.677879
\(747\) −37.0406 −1.35524
\(748\) −0.337134 −0.0123269
\(749\) −3.07719 −0.112438
\(750\) −1.37209 −0.0501016
\(751\) 21.3291 0.778309 0.389154 0.921173i \(-0.372767\pi\)
0.389154 + 0.921173i \(0.372767\pi\)
\(752\) −54.3141 −1.98063
\(753\) 5.37604 0.195914
\(754\) −20.9281 −0.762155
\(755\) −15.0125 −0.546361
\(756\) −1.89581 −0.0689500
\(757\) 29.8220 1.08390 0.541950 0.840411i \(-0.317686\pi\)
0.541950 + 0.840411i \(0.317686\pi\)
\(758\) −42.3129 −1.53687
\(759\) −4.34336 −0.157654
\(760\) 5.45991 0.198052
\(761\) 3.08106 0.111688 0.0558442 0.998439i \(-0.482215\pi\)
0.0558442 + 0.998439i \(0.482215\pi\)
\(762\) −9.08505 −0.329117
\(763\) 1.11332 0.0403049
\(764\) 1.23784 0.0447836
\(765\) 3.00225 0.108547
\(766\) −6.28834 −0.227207
\(767\) −12.6186 −0.455631
\(768\) −6.44880 −0.232701
\(769\) 40.6837 1.46709 0.733546 0.679640i \(-0.237864\pi\)
0.733546 + 0.679640i \(0.237864\pi\)
\(770\) 1.63005 0.0587430
\(771\) 20.3401 0.732530
\(772\) −5.98027 −0.215235
\(773\) 45.0497 1.62032 0.810162 0.586206i \(-0.199379\pi\)
0.810162 + 0.586206i \(0.199379\pi\)
\(774\) −25.4214 −0.913755
\(775\) 2.40299 0.0863178
\(776\) 0.228057 0.00818678
\(777\) 12.3896 0.444473
\(778\) −56.8754 −2.03908
\(779\) 9.10629 0.326267
\(780\) −0.518629 −0.0185699
\(781\) −11.7861 −0.421739
\(782\) 12.4364 0.444724
\(783\) −34.2178 −1.22284
\(784\) 23.6031 0.842969
\(785\) −10.7690 −0.384361
\(786\) 16.9404 0.604244
\(787\) −38.0102 −1.35492 −0.677458 0.735561i \(-0.736918\pi\)
−0.677458 + 0.735561i \(0.736918\pi\)
\(788\) 0.303910 0.0108263
\(789\) −11.1285 −0.396186
\(790\) −12.4147 −0.441696
\(791\) −19.9495 −0.709322
\(792\) 4.53256 0.161058
\(793\) 8.37152 0.297281
\(794\) 7.77806 0.276033
\(795\) 1.32749 0.0470812
\(796\) 0.321391 0.0113914
\(797\) −28.5045 −1.00968 −0.504841 0.863212i \(-0.668449\pi\)
−0.504841 + 0.863212i \(0.668449\pi\)
\(798\) 3.87452 0.137157
\(799\) 16.5437 0.585274
\(800\) 1.70498 0.0602802
\(801\) −9.76214 −0.344928
\(802\) −23.4643 −0.828553
\(803\) −9.94536 −0.350964
\(804\) 0.0887935 0.00313151
\(805\) −7.93179 −0.279559
\(806\) 6.88568 0.242538
\(807\) 15.2500 0.536826
\(808\) −2.04560 −0.0719641
\(809\) 12.4265 0.436891 0.218446 0.975849i \(-0.429901\pi\)
0.218446 + 0.975849i \(0.429901\pi\)
\(810\) 3.51147 0.123380
\(811\) −9.69402 −0.340403 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(812\) 2.95536 0.103713
\(813\) −28.4243 −0.996882
\(814\) 12.6021 0.441704
\(815\) 5.02583 0.176047
\(816\) 5.61400 0.196529
\(817\) 16.2722 0.569292
\(818\) −4.91693 −0.171916
\(819\) −5.48681 −0.191725
\(820\) 1.30491 0.0455696
\(821\) −6.47366 −0.225932 −0.112966 0.993599i \(-0.536035\pi\)
−0.112966 + 0.993599i \(0.536035\pi\)
\(822\) 18.7846 0.655188
\(823\) −18.0348 −0.628653 −0.314326 0.949315i \(-0.601779\pi\)
−0.314326 + 0.949315i \(0.601779\pi\)
\(824\) 0.786213 0.0273890
\(825\) 0.729098 0.0253839
\(826\) 13.5087 0.470027
\(827\) −1.73838 −0.0604493 −0.0302246 0.999543i \(-0.509622\pi\)
−0.0302246 + 0.999543i \(0.509622\pi\)
\(828\) 3.95193 0.137339
\(829\) 34.0976 1.18426 0.592129 0.805843i \(-0.298288\pi\)
0.592129 + 0.805843i \(0.298288\pi\)
\(830\) 25.7564 0.894018
\(831\) −8.20329 −0.284569
\(832\) −12.1633 −0.421685
\(833\) −7.18934 −0.249096
\(834\) −20.1072 −0.696256
\(835\) −1.90454 −0.0659095
\(836\) 0.519859 0.0179797
\(837\) 11.2582 0.389141
\(838\) 8.55883 0.295660
\(839\) 18.1097 0.625216 0.312608 0.949882i \(-0.398797\pi\)
0.312608 + 0.949882i \(0.398797\pi\)
\(840\) −3.09858 −0.106911
\(841\) 24.3417 0.839371
\(842\) 40.1894 1.38502
\(843\) 13.9323 0.479855
\(844\) −1.98067 −0.0681776
\(845\) 9.43610 0.324612
\(846\) 39.8537 1.37020
\(847\) 13.7800 0.473487
\(848\) −6.63107 −0.227712
\(849\) −17.2937 −0.593519
\(850\) −2.08763 −0.0716053
\(851\) −61.3216 −2.10208
\(852\) −4.01445 −0.137533
\(853\) 22.5440 0.771893 0.385946 0.922521i \(-0.373875\pi\)
0.385946 + 0.922521i \(0.373875\pi\)
\(854\) −8.96203 −0.306675
\(855\) −4.62945 −0.158324
\(856\) 5.94982 0.203361
\(857\) 4.62439 0.157966 0.0789831 0.996876i \(-0.474833\pi\)
0.0789831 + 0.996876i \(0.474833\pi\)
\(858\) 2.08921 0.0713243
\(859\) −11.1076 −0.378987 −0.189494 0.981882i \(-0.560685\pi\)
−0.189494 + 0.981882i \(0.560685\pi\)
\(860\) 2.33178 0.0795129
\(861\) −5.16796 −0.176124
\(862\) −2.84466 −0.0968895
\(863\) −39.7499 −1.35310 −0.676551 0.736396i \(-0.736526\pi\)
−0.676551 + 0.736396i \(0.736526\pi\)
\(864\) 7.98801 0.271757
\(865\) −4.80845 −0.163492
\(866\) 27.0248 0.918342
\(867\) 13.6573 0.463827
\(868\) −0.972362 −0.0330041
\(869\) 6.59692 0.223785
\(870\) 10.0211 0.339747
\(871\) 0.610169 0.0206748
\(872\) −2.15263 −0.0728972
\(873\) −0.193369 −0.00654455
\(874\) −19.1768 −0.648665
\(875\) 1.33147 0.0450120
\(876\) −3.38749 −0.114453
\(877\) −6.45187 −0.217864 −0.108932 0.994049i \(-0.534743\pi\)
−0.108932 + 0.994049i \(0.534743\pi\)
\(878\) −28.2323 −0.952794
\(879\) −2.27808 −0.0768377
\(880\) −3.64199 −0.122771
\(881\) −50.7803 −1.71083 −0.855416 0.517942i \(-0.826698\pi\)
−0.855416 + 0.517942i \(0.826698\pi\)
\(882\) −17.3191 −0.583165
\(883\) −13.8119 −0.464808 −0.232404 0.972619i \(-0.574659\pi\)
−0.232404 + 0.972619i \(0.574659\pi\)
\(884\) −0.789094 −0.0265401
\(885\) 6.04223 0.203107
\(886\) −29.6427 −0.995867
\(887\) −28.1384 −0.944794 −0.472397 0.881386i \(-0.656611\pi\)
−0.472397 + 0.881386i \(0.656611\pi\)
\(888\) −23.9555 −0.803894
\(889\) 8.81612 0.295683
\(890\) 6.78817 0.227540
\(891\) −1.86592 −0.0625106
\(892\) −5.13393 −0.171897
\(893\) −25.5102 −0.853668
\(894\) 3.38971 0.113369
\(895\) −14.8504 −0.496393
\(896\) 17.5615 0.586689
\(897\) −10.1660 −0.339434
\(898\) −43.5134 −1.45206
\(899\) −17.5503 −0.585336
\(900\) −0.663391 −0.0221130
\(901\) 2.01978 0.0672885
\(902\) −5.25663 −0.175027
\(903\) −9.23472 −0.307312
\(904\) 38.5728 1.28291
\(905\) 16.8196 0.559104
\(906\) 20.5985 0.684338
\(907\) 3.39438 0.112709 0.0563543 0.998411i \(-0.482052\pi\)
0.0563543 + 0.998411i \(0.482052\pi\)
\(908\) −4.92769 −0.163531
\(909\) 1.73446 0.0575285
\(910\) 3.81529 0.126476
\(911\) 14.4778 0.479670 0.239835 0.970814i \(-0.422907\pi\)
0.239835 + 0.970814i \(0.422907\pi\)
\(912\) −8.65675 −0.286654
\(913\) −13.6864 −0.452954
\(914\) 46.9064 1.55153
\(915\) −4.00858 −0.132520
\(916\) 3.29323 0.108811
\(917\) −16.4389 −0.542862
\(918\) −9.78077 −0.322813
\(919\) 9.28005 0.306121 0.153060 0.988217i \(-0.451087\pi\)
0.153060 + 0.988217i \(0.451087\pi\)
\(920\) 15.3363 0.505623
\(921\) 21.5008 0.708474
\(922\) −33.6053 −1.10673
\(923\) −27.5864 −0.908017
\(924\) −0.295028 −0.00970570
\(925\) 10.2938 0.338457
\(926\) −49.3479 −1.62167
\(927\) −0.666628 −0.0218949
\(928\) −12.4524 −0.408770
\(929\) −15.6769 −0.514343 −0.257172 0.966366i \(-0.582791\pi\)
−0.257172 + 0.966366i \(0.582791\pi\)
\(930\) −3.29711 −0.108116
\(931\) 11.0859 0.363326
\(932\) −5.93407 −0.194377
\(933\) −6.32716 −0.207142
\(934\) 35.7789 1.17072
\(935\) 1.10932 0.0362788
\(936\) 10.6089 0.346762
\(937\) 2.90179 0.0947975 0.0473987 0.998876i \(-0.484907\pi\)
0.0473987 + 0.998876i \(0.484907\pi\)
\(938\) −0.653209 −0.0213280
\(939\) −8.11214 −0.264730
\(940\) −3.65557 −0.119232
\(941\) −58.3823 −1.90321 −0.951605 0.307324i \(-0.900566\pi\)
−0.951605 + 0.307324i \(0.900566\pi\)
\(942\) 14.7760 0.481427
\(943\) 25.5786 0.832954
\(944\) −30.1821 −0.982345
\(945\) 6.23807 0.202925
\(946\) −9.39316 −0.305398
\(947\) 55.5899 1.80643 0.903214 0.429191i \(-0.141201\pi\)
0.903214 + 0.429191i \(0.141201\pi\)
\(948\) 2.24698 0.0729784
\(949\) −23.2780 −0.755637
\(950\) 3.21912 0.104442
\(951\) 19.6585 0.637471
\(952\) −4.71450 −0.152798
\(953\) −53.1604 −1.72204 −0.861018 0.508575i \(-0.830172\pi\)
−0.861018 + 0.508575i \(0.830172\pi\)
\(954\) 4.86563 0.157531
\(955\) −4.07306 −0.131801
\(956\) −3.79645 −0.122786
\(957\) −5.32500 −0.172133
\(958\) 22.6638 0.732235
\(959\) −18.2286 −0.588631
\(960\) 5.82420 0.187975
\(961\) −25.2257 −0.813731
\(962\) 29.4964 0.951003
\(963\) −5.04484 −0.162568
\(964\) 4.70981 0.151693
\(965\) 19.6778 0.633451
\(966\) 10.8831 0.350159
\(967\) −14.6506 −0.471133 −0.235566 0.971858i \(-0.575694\pi\)
−0.235566 + 0.971858i \(0.575694\pi\)
\(968\) −26.6440 −0.856371
\(969\) 2.63679 0.0847058
\(970\) 0.134461 0.00431727
\(971\) −8.27515 −0.265562 −0.132781 0.991145i \(-0.542391\pi\)
−0.132781 + 0.991145i \(0.542391\pi\)
\(972\) −4.90709 −0.157395
\(973\) 19.5120 0.625526
\(974\) −63.3246 −2.02905
\(975\) 1.70652 0.0546524
\(976\) 20.0237 0.640942
\(977\) 26.5630 0.849824 0.424912 0.905235i \(-0.360305\pi\)
0.424912 + 0.905235i \(0.360305\pi\)
\(978\) −6.89588 −0.220506
\(979\) −3.60709 −0.115283
\(980\) 1.58859 0.0507457
\(981\) 1.82521 0.0582745
\(982\) −40.9856 −1.30790
\(983\) 20.7737 0.662579 0.331290 0.943529i \(-0.392516\pi\)
0.331290 + 0.943529i \(0.392516\pi\)
\(984\) 9.99237 0.318545
\(985\) −1.00000 −0.0318626
\(986\) 15.2471 0.485567
\(987\) 14.4775 0.460822
\(988\) 1.21678 0.0387108
\(989\) 45.7069 1.45339
\(990\) 2.67236 0.0849331
\(991\) 18.8231 0.597937 0.298968 0.954263i \(-0.403357\pi\)
0.298968 + 0.954263i \(0.403357\pi\)
\(992\) 4.09705 0.130081
\(993\) −26.7355 −0.848424
\(994\) 29.5323 0.936708
\(995\) −1.05752 −0.0335257
\(996\) −4.66172 −0.147712
\(997\) 50.8349 1.60996 0.804979 0.593304i \(-0.202177\pi\)
0.804979 + 0.593304i \(0.202177\pi\)
\(998\) 34.0973 1.07933
\(999\) 48.2273 1.52584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 985.2.a.g.1.4 17
3.2 odd 2 8865.2.a.z.1.14 17
5.4 even 2 4925.2.a.l.1.14 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.g.1.4 17 1.1 even 1 trivial
4925.2.a.l.1.14 17 5.4 even 2
8865.2.a.z.1.14 17 3.2 odd 2