Properties

Label 985.2.b.a.789.68
Level $985$
Weight $2$
Character 985.789
Analytic conductor $7.865$
Analytic rank $0$
Dimension $98$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [985,2,Mod(789,985)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(985, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("985.789");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(98\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 789.68
Character \(\chi\) \(=\) 985.789
Dual form 985.2.b.a.789.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.27373i q^{2} -3.21433i q^{3} +0.377621 q^{4} +(-1.42261 + 1.72516i) q^{5} +4.09418 q^{6} -0.234977i q^{7} +3.02844i q^{8} -7.33194 q^{9} +(-2.19739 - 1.81201i) q^{10} -0.577101 q^{11} -1.21380i q^{12} +3.89397i q^{13} +0.299296 q^{14} +(5.54525 + 4.57273i) q^{15} -3.10216 q^{16} +3.49246i q^{17} -9.33888i q^{18} -7.16189 q^{19} +(-0.537206 + 0.651458i) q^{20} -0.755293 q^{21} -0.735069i q^{22} -4.85751i q^{23} +9.73441 q^{24} +(-0.952375 - 4.90846i) q^{25} -4.95986 q^{26} +13.9243i q^{27} -0.0887321i q^{28} -8.44483 q^{29} +(-5.82441 + 7.06313i) q^{30} -5.57555 q^{31} +2.10557i q^{32} +1.85499i q^{33} -4.44844 q^{34} +(0.405373 + 0.334280i) q^{35} -2.76869 q^{36} +5.18286i q^{37} -9.12229i q^{38} +12.5165 q^{39} +(-5.22455 - 4.30828i) q^{40} +4.90259 q^{41} -0.962037i q^{42} -3.12584i q^{43} -0.217925 q^{44} +(10.4305 - 12.6488i) q^{45} +6.18714 q^{46} +6.99306i q^{47} +9.97138i q^{48} +6.94479 q^{49} +(6.25204 - 1.21307i) q^{50} +11.2259 q^{51} +1.47045i q^{52} +12.1609i q^{53} -17.7357 q^{54} +(0.820988 - 0.995593i) q^{55} +0.711612 q^{56} +23.0207i q^{57} -10.7564i q^{58} +14.3710 q^{59} +(2.09400 + 1.72676i) q^{60} -7.71724 q^{61} -7.10173i q^{62} +1.72283i q^{63} -8.88625 q^{64} +(-6.71774 - 5.53960i) q^{65} -2.36276 q^{66} +2.57664i q^{67} +1.31883i q^{68} -15.6136 q^{69} +(-0.425781 + 0.516334i) q^{70} +7.82253 q^{71} -22.2043i q^{72} -8.14734i q^{73} -6.60155 q^{74} +(-15.7774 + 3.06125i) q^{75} -2.70448 q^{76} +0.135605i q^{77} +15.9426i q^{78} +0.388882 q^{79} +(4.41316 - 5.35173i) q^{80} +22.7615 q^{81} +6.24456i q^{82} +5.26069i q^{83} -0.285214 q^{84} +(-6.02507 - 4.96840i) q^{85} +3.98147 q^{86} +27.1445i q^{87} -1.74771i q^{88} -8.36693 q^{89} +(16.1111 + 13.2856i) q^{90} +0.914993 q^{91} -1.83430i q^{92} +17.9217i q^{93} -8.90725 q^{94} +(10.1886 - 12.3554i) q^{95} +6.76801 q^{96} -8.83287i q^{97} +8.84576i q^{98} +4.23127 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 98 q - 98 q^{4} - 2 q^{5} + 4 q^{6} - 102 q^{9} - 6 q^{10} - 4 q^{11} + 16 q^{14} - 2 q^{15} + 98 q^{16} - 8 q^{19} - 2 q^{20} + 20 q^{21} + 10 q^{25} - 4 q^{26} - 12 q^{29} - 10 q^{30} - 4 q^{31} + 24 q^{34}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/985\mathbb{Z}\right)^\times\).

\(n\) \(396\) \(592\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27373i 0.900661i 0.892862 + 0.450330i \(0.148694\pi\)
−0.892862 + 0.450330i \(0.851306\pi\)
\(3\) 3.21433i 1.85580i −0.372834 0.927898i \(-0.621614\pi\)
0.372834 0.927898i \(-0.378386\pi\)
\(4\) 0.377621 0.188810
\(5\) −1.42261 + 1.72516i −0.636209 + 0.771516i
\(6\) 4.09418 1.67144
\(7\) 0.234977i 0.0888128i −0.999014 0.0444064i \(-0.985860\pi\)
0.999014 0.0444064i \(-0.0141396\pi\)
\(8\) 3.02844i 1.07071i
\(9\) −7.33194 −2.44398
\(10\) −2.19739 1.81201i −0.694874 0.573009i
\(11\) −0.577101 −0.174002 −0.0870012 0.996208i \(-0.527728\pi\)
−0.0870012 + 0.996208i \(0.527728\pi\)
\(12\) 1.21380i 0.350394i
\(13\) 3.89397i 1.07999i 0.841667 + 0.539997i \(0.181575\pi\)
−0.841667 + 0.539997i \(0.818425\pi\)
\(14\) 0.299296 0.0799902
\(15\) 5.54525 + 4.57273i 1.43178 + 1.18068i
\(16\) −3.10216 −0.775540
\(17\) 3.49246i 0.847047i 0.905885 + 0.423523i \(0.139207\pi\)
−0.905885 + 0.423523i \(0.860793\pi\)
\(18\) 9.33888i 2.20120i
\(19\) −7.16189 −1.64305 −0.821525 0.570173i \(-0.806876\pi\)
−0.821525 + 0.570173i \(0.806876\pi\)
\(20\) −0.537206 + 0.651458i −0.120123 + 0.145670i
\(21\) −0.755293 −0.164818
\(22\) 0.735069i 0.156717i
\(23\) 4.85751i 1.01286i −0.862281 0.506430i \(-0.830965\pi\)
0.862281 0.506430i \(-0.169035\pi\)
\(24\) 9.73441 1.98703
\(25\) −0.952375 4.90846i −0.190475 0.981692i
\(26\) −4.95986 −0.972708
\(27\) 13.9243i 2.67973i
\(28\) 0.0887321i 0.0167688i
\(29\) −8.44483 −1.56817 −0.784083 0.620656i \(-0.786866\pi\)
−0.784083 + 0.620656i \(0.786866\pi\)
\(30\) −5.82441 + 7.06313i −1.06339 + 1.28955i
\(31\) −5.57555 −1.00140 −0.500699 0.865621i \(-0.666924\pi\)
−0.500699 + 0.865621i \(0.666924\pi\)
\(32\) 2.10557i 0.372216i
\(33\) 1.85499i 0.322913i
\(34\) −4.44844 −0.762901
\(35\) 0.405373 + 0.334280i 0.0685205 + 0.0565036i
\(36\) −2.76869 −0.461449
\(37\) 5.18286i 0.852057i 0.904710 + 0.426028i \(0.140088\pi\)
−0.904710 + 0.426028i \(0.859912\pi\)
\(38\) 9.12229i 1.47983i
\(39\) 12.5165 2.00425
\(40\) −5.22455 4.30828i −0.826074 0.681199i
\(41\) 4.90259 0.765656 0.382828 0.923820i \(-0.374950\pi\)
0.382828 + 0.923820i \(0.374950\pi\)
\(42\) 0.962037i 0.148446i
\(43\) 3.12584i 0.476686i −0.971181 0.238343i \(-0.923396\pi\)
0.971181 0.238343i \(-0.0766043\pi\)
\(44\) −0.217925 −0.0328535
\(45\) 10.4305 12.6488i 1.55488 1.88557i
\(46\) 6.18714 0.912243
\(47\) 6.99306i 1.02004i 0.860162 + 0.510021i \(0.170363\pi\)
−0.860162 + 0.510021i \(0.829637\pi\)
\(48\) 9.97138i 1.43924i
\(49\) 6.94479 0.992112
\(50\) 6.25204 1.21307i 0.884171 0.171553i
\(51\) 11.2259 1.57195
\(52\) 1.47045i 0.203914i
\(53\) 12.1609i 1.67042i 0.549929 + 0.835212i \(0.314655\pi\)
−0.549929 + 0.835212i \(0.685345\pi\)
\(54\) −17.7357 −2.41353
\(55\) 0.820988 0.995593i 0.110702 0.134246i
\(56\) 0.711612 0.0950932
\(57\) 23.0207i 3.04917i
\(58\) 10.7564i 1.41239i
\(59\) 14.3710 1.87095 0.935475 0.353393i \(-0.114972\pi\)
0.935475 + 0.353393i \(0.114972\pi\)
\(60\) 2.09400 + 1.72676i 0.270334 + 0.222924i
\(61\) −7.71724 −0.988092 −0.494046 0.869436i \(-0.664482\pi\)
−0.494046 + 0.869436i \(0.664482\pi\)
\(62\) 7.10173i 0.901920i
\(63\) 1.72283i 0.217057i
\(64\) −8.88625 −1.11078
\(65\) −6.71774 5.53960i −0.833233 0.687102i
\(66\) −2.36276 −0.290835
\(67\) 2.57664i 0.314787i 0.987536 + 0.157393i \(0.0503090\pi\)
−0.987536 + 0.157393i \(0.949691\pi\)
\(68\) 1.31883i 0.159931i
\(69\) −15.6136 −1.87966
\(70\) −0.425781 + 0.516334i −0.0508905 + 0.0617138i
\(71\) 7.82253 0.928363 0.464182 0.885740i \(-0.346348\pi\)
0.464182 + 0.885740i \(0.346348\pi\)
\(72\) 22.2043i 2.61680i
\(73\) 8.14734i 0.953574i −0.879019 0.476787i \(-0.841801\pi\)
0.879019 0.476787i \(-0.158199\pi\)
\(74\) −6.60155 −0.767414
\(75\) −15.7774 + 3.06125i −1.82182 + 0.353483i
\(76\) −2.70448 −0.310225
\(77\) 0.135605i 0.0154537i
\(78\) 15.9426i 1.80515i
\(79\) 0.388882 0.0437526 0.0218763 0.999761i \(-0.493036\pi\)
0.0218763 + 0.999761i \(0.493036\pi\)
\(80\) 4.41316 5.35173i 0.493406 0.598342i
\(81\) 22.7615 2.52906
\(82\) 6.24456i 0.689597i
\(83\) 5.26069i 0.577436i 0.957414 + 0.288718i \(0.0932289\pi\)
−0.957414 + 0.288718i \(0.906771\pi\)
\(84\) −0.285214 −0.0311195
\(85\) −6.02507 4.96840i −0.653510 0.538899i
\(86\) 3.98147 0.429333
\(87\) 27.1445i 2.91020i
\(88\) 1.74771i 0.186307i
\(89\) −8.36693 −0.886893 −0.443446 0.896301i \(-0.646244\pi\)
−0.443446 + 0.896301i \(0.646244\pi\)
\(90\) 16.1111 + 13.2856i 1.69826 + 1.40042i
\(91\) 0.914993 0.0959173
\(92\) 1.83430i 0.191239i
\(93\) 17.9217i 1.85839i
\(94\) −8.90725 −0.918712
\(95\) 10.1886 12.3554i 1.04532 1.26764i
\(96\) 6.76801 0.690757
\(97\) 8.83287i 0.896842i −0.893822 0.448421i \(-0.851987\pi\)
0.893822 0.448421i \(-0.148013\pi\)
\(98\) 8.84576i 0.893556i
\(99\) 4.23127 0.425258
\(100\) −0.359637 1.85354i −0.0359637 0.185354i
\(101\) 1.70238 0.169393 0.0846967 0.996407i \(-0.473008\pi\)
0.0846967 + 0.996407i \(0.473008\pi\)
\(102\) 14.2988i 1.41579i
\(103\) 2.80970i 0.276848i −0.990373 0.138424i \(-0.955796\pi\)
0.990373 0.138424i \(-0.0442036\pi\)
\(104\) −11.7927 −1.15637
\(105\) 1.07449 1.30300i 0.104859 0.127160i
\(106\) −15.4896 −1.50448
\(107\) 6.50076i 0.628452i 0.949348 + 0.314226i \(0.101745\pi\)
−0.949348 + 0.314226i \(0.898255\pi\)
\(108\) 5.25810i 0.505961i
\(109\) −11.9904 −1.14847 −0.574236 0.818690i \(-0.694701\pi\)
−0.574236 + 0.818690i \(0.694701\pi\)
\(110\) 1.26811 + 1.04571i 0.120910 + 0.0997050i
\(111\) 16.6594 1.58124
\(112\) 0.728935i 0.0688779i
\(113\) 9.74277i 0.916522i −0.888818 0.458261i \(-0.848472\pi\)
0.888818 0.458261i \(-0.151528\pi\)
\(114\) −29.3221 −2.74626
\(115\) 8.37999 + 6.91033i 0.781438 + 0.644391i
\(116\) −3.18895 −0.296086
\(117\) 28.5504i 2.63948i
\(118\) 18.3048i 1.68509i
\(119\) 0.820647 0.0752286
\(120\) −13.8482 + 16.7934i −1.26417 + 1.53302i
\(121\) −10.6670 −0.969723
\(122\) 9.82965i 0.889935i
\(123\) 15.7586i 1.42090i
\(124\) −2.10544 −0.189075
\(125\) 9.82275 + 5.33981i 0.878573 + 0.477607i
\(126\) −2.19442 −0.195494
\(127\) 10.3084i 0.914723i −0.889281 0.457361i \(-0.848795\pi\)
0.889281 0.457361i \(-0.151205\pi\)
\(128\) 7.10750i 0.628220i
\(129\) −10.0475 −0.884633
\(130\) 7.05593 8.55656i 0.618846 0.750460i
\(131\) 19.5189 1.70537 0.852686 0.522423i \(-0.174972\pi\)
0.852686 + 0.522423i \(0.174972\pi\)
\(132\) 0.700485i 0.0609694i
\(133\) 1.68288i 0.145924i
\(134\) −3.28193 −0.283516
\(135\) −24.0217 19.8088i −2.06746 1.70487i
\(136\) −10.5767 −0.906945
\(137\) 3.03314i 0.259139i −0.991570 0.129569i \(-0.958641\pi\)
0.991570 0.129569i \(-0.0413595\pi\)
\(138\) 19.8875i 1.69294i
\(139\) −2.29531 −0.194686 −0.0973428 0.995251i \(-0.531034\pi\)
−0.0973428 + 0.995251i \(0.531034\pi\)
\(140\) 0.153077 + 0.126231i 0.0129374 + 0.0106685i
\(141\) 22.4780 1.89299
\(142\) 9.96376i 0.836140i
\(143\) 2.24722i 0.187922i
\(144\) 22.7448 1.89540
\(145\) 12.0137 14.5687i 0.997682 1.20987i
\(146\) 10.3775 0.858847
\(147\) 22.3229i 1.84116i
\(148\) 1.95716i 0.160877i
\(149\) −12.8336 −1.05137 −0.525685 0.850679i \(-0.676191\pi\)
−0.525685 + 0.850679i \(0.676191\pi\)
\(150\) −3.89920 20.0961i −0.318368 1.64084i
\(151\) −4.69271 −0.381887 −0.190944 0.981601i \(-0.561155\pi\)
−0.190944 + 0.981601i \(0.561155\pi\)
\(152\) 21.6893i 1.75924i
\(153\) 25.6065i 2.07016i
\(154\) −0.172724 −0.0139185
\(155\) 7.93182 9.61874i 0.637099 0.772595i
\(156\) 4.72650 0.378423
\(157\) 3.54513i 0.282933i −0.989943 0.141466i \(-0.954818\pi\)
0.989943 0.141466i \(-0.0451817\pi\)
\(158\) 0.495329i 0.0394063i
\(159\) 39.0891 3.09997
\(160\) −3.63246 2.99540i −0.287171 0.236807i
\(161\) −1.14140 −0.0899550
\(162\) 28.9919i 2.27782i
\(163\) 2.45347i 0.192171i 0.995373 + 0.0960853i \(0.0306322\pi\)
−0.995373 + 0.0960853i \(0.969368\pi\)
\(164\) 1.85132 0.144564
\(165\) −3.20017 2.63893i −0.249133 0.205440i
\(166\) −6.70068 −0.520074
\(167\) 6.34224i 0.490777i 0.969425 + 0.245389i \(0.0789156\pi\)
−0.969425 + 0.245389i \(0.921084\pi\)
\(168\) 2.28736i 0.176474i
\(169\) −2.16303 −0.166387
\(170\) 6.32839 7.67429i 0.485365 0.588591i
\(171\) 52.5105 4.01558
\(172\) 1.18038i 0.0900034i
\(173\) 7.16447i 0.544705i −0.962198 0.272352i \(-0.912198\pi\)
0.962198 0.272352i \(-0.0878017\pi\)
\(174\) −34.5747 −2.62110
\(175\) −1.15337 + 0.223786i −0.0871868 + 0.0169166i
\(176\) 1.79026 0.134946
\(177\) 46.1933i 3.47210i
\(178\) 10.6572i 0.798790i
\(179\) 7.39749 0.552914 0.276457 0.961026i \(-0.410840\pi\)
0.276457 + 0.961026i \(0.410840\pi\)
\(180\) 3.93876 4.77645i 0.293578 0.356015i
\(181\) −20.1924 −1.50089 −0.750445 0.660933i \(-0.770161\pi\)
−0.750445 + 0.660933i \(0.770161\pi\)
\(182\) 1.16545i 0.0863889i
\(183\) 24.8058i 1.83370i
\(184\) 14.7107 1.08448
\(185\) −8.94128 7.37318i −0.657376 0.542087i
\(186\) −22.8273 −1.67378
\(187\) 2.01550i 0.147388i
\(188\) 2.64073i 0.192595i
\(189\) 3.27188 0.237994
\(190\) 15.7374 + 12.9774i 1.14171 + 0.941482i
\(191\) −20.5634 −1.48791 −0.743957 0.668227i \(-0.767053\pi\)
−0.743957 + 0.668227i \(0.767053\pi\)
\(192\) 28.5634i 2.06138i
\(193\) 2.68844i 0.193518i −0.995308 0.0967591i \(-0.969152\pi\)
0.995308 0.0967591i \(-0.0308476\pi\)
\(194\) 11.2507 0.807750
\(195\) −17.8061 + 21.5931i −1.27512 + 1.54631i
\(196\) 2.62250 0.187321
\(197\) 1.00000i 0.0712470i
\(198\) 5.38948i 0.383014i
\(199\) 5.33760 0.378373 0.189186 0.981941i \(-0.439415\pi\)
0.189186 + 0.981941i \(0.439415\pi\)
\(200\) 14.8650 2.88421i 1.05111 0.203944i
\(201\) 8.28218 0.584180
\(202\) 2.16837i 0.152566i
\(203\) 1.98434i 0.139273i
\(204\) 4.23915 0.296800
\(205\) −6.97447 + 8.45777i −0.487118 + 0.590717i
\(206\) 3.57878 0.249346
\(207\) 35.6149i 2.47541i
\(208\) 12.0797i 0.837579i
\(209\) 4.13313 0.285895
\(210\) 1.65967 + 1.36860i 0.114528 + 0.0944425i
\(211\) −27.4653 −1.89079 −0.945395 0.325927i \(-0.894324\pi\)
−0.945395 + 0.325927i \(0.894324\pi\)
\(212\) 4.59220i 0.315393i
\(213\) 25.1442i 1.72285i
\(214\) −8.28019 −0.566022
\(215\) 5.39259 + 4.44685i 0.367771 + 0.303272i
\(216\) −42.1689 −2.86923
\(217\) 1.31012i 0.0889370i
\(218\) 15.2725i 1.03438i
\(219\) −26.1883 −1.76964
\(220\) 0.310022 0.375957i 0.0209017 0.0253470i
\(221\) −13.5996 −0.914805
\(222\) 21.2196i 1.42416i
\(223\) 24.1738i 1.61880i 0.587260 + 0.809399i \(0.300207\pi\)
−0.587260 + 0.809399i \(0.699793\pi\)
\(224\) 0.494760 0.0330576
\(225\) 6.98275 + 35.9885i 0.465517 + 2.39923i
\(226\) 12.4096 0.825476
\(227\) 17.8340i 1.18368i −0.806054 0.591842i \(-0.798401\pi\)
0.806054 0.591842i \(-0.201599\pi\)
\(228\) 8.69309i 0.575714i
\(229\) 26.4544 1.74816 0.874079 0.485784i \(-0.161466\pi\)
0.874079 + 0.485784i \(0.161466\pi\)
\(230\) −8.80187 + 10.6738i −0.580378 + 0.703811i
\(231\) 0.435880 0.0286788
\(232\) 25.5747i 1.67906i
\(233\) 30.1629i 1.97604i 0.154335 + 0.988019i \(0.450676\pi\)
−0.154335 + 0.988019i \(0.549324\pi\)
\(234\) 36.3654 2.37728
\(235\) −12.0642 9.94838i −0.786980 0.648961i
\(236\) 5.42680 0.353255
\(237\) 1.25000i 0.0811959i
\(238\) 1.04528i 0.0677554i
\(239\) −4.58904 −0.296840 −0.148420 0.988924i \(-0.547419\pi\)
−0.148420 + 0.988924i \(0.547419\pi\)
\(240\) −17.2023 14.1854i −1.11040 0.915661i
\(241\) 23.5615 1.51773 0.758864 0.651249i \(-0.225755\pi\)
0.758864 + 0.651249i \(0.225755\pi\)
\(242\) 13.5868i 0.873391i
\(243\) 31.3902i 2.01368i
\(244\) −2.91419 −0.186562
\(245\) −9.87971 + 11.9809i −0.631191 + 0.765431i
\(246\) 20.0721 1.27975
\(247\) 27.8882i 1.77448i
\(248\) 16.8852i 1.07221i
\(249\) 16.9096 1.07160
\(250\) −6.80146 + 12.5115i −0.430162 + 0.791297i
\(251\) 12.0057 0.757794 0.378897 0.925439i \(-0.376304\pi\)
0.378897 + 0.925439i \(0.376304\pi\)
\(252\) 0.650578i 0.0409826i
\(253\) 2.80327i 0.176240i
\(254\) 13.1301 0.823855
\(255\) −15.9701 + 19.3666i −1.00009 + 1.21278i
\(256\) −8.71948 −0.544967
\(257\) 14.1205i 0.880812i 0.897799 + 0.440406i \(0.145165\pi\)
−0.897799 + 0.440406i \(0.854835\pi\)
\(258\) 12.7978i 0.796754i
\(259\) 1.21785 0.0756736
\(260\) −2.53676 2.09187i −0.157323 0.129732i
\(261\) 61.9170 3.83257
\(262\) 24.8617i 1.53596i
\(263\) 10.3347i 0.637268i 0.947878 + 0.318634i \(0.103224\pi\)
−0.947878 + 0.318634i \(0.896776\pi\)
\(264\) −5.61774 −0.345748
\(265\) −20.9795 17.3001i −1.28876 1.06274i
\(266\) −2.14352 −0.131428
\(267\) 26.8941i 1.64589i
\(268\) 0.972993i 0.0594350i
\(269\) 15.0254 0.916112 0.458056 0.888923i \(-0.348546\pi\)
0.458056 + 0.888923i \(0.348546\pi\)
\(270\) 25.2310 30.5970i 1.53551 1.86208i
\(271\) −3.06893 −0.186424 −0.0932120 0.995646i \(-0.529713\pi\)
−0.0932120 + 0.995646i \(0.529713\pi\)
\(272\) 10.8342i 0.656919i
\(273\) 2.94109i 0.178003i
\(274\) 3.86339 0.233396
\(275\) 0.549616 + 2.83268i 0.0331431 + 0.170817i
\(276\) −5.89604 −0.354900
\(277\) 32.3023i 1.94086i 0.241385 + 0.970429i \(0.422398\pi\)
−0.241385 + 0.970429i \(0.577602\pi\)
\(278\) 2.92360i 0.175346i
\(279\) 40.8796 2.44740
\(280\) −1.01235 + 1.22765i −0.0604992 + 0.0733660i
\(281\) −29.3552 −1.75118 −0.875592 0.483052i \(-0.839528\pi\)
−0.875592 + 0.483052i \(0.839528\pi\)
\(282\) 28.6309i 1.70494i
\(283\) 15.3472i 0.912298i −0.889903 0.456149i \(-0.849228\pi\)
0.889903 0.456149i \(-0.150772\pi\)
\(284\) 2.95395 0.175285
\(285\) −39.7144 32.7494i −2.35248 1.93991i
\(286\) 2.86234 0.169254
\(287\) 1.15200i 0.0680001i
\(288\) 15.4379i 0.909689i
\(289\) 4.80271 0.282512
\(290\) 18.5566 + 15.3021i 1.08968 + 0.898573i
\(291\) −28.3918 −1.66436
\(292\) 3.07661i 0.180045i
\(293\) 25.7169i 1.50240i 0.660075 + 0.751199i \(0.270524\pi\)
−0.660075 + 0.751199i \(0.729476\pi\)
\(294\) 28.4332 1.65826
\(295\) −20.4443 + 24.7924i −1.19032 + 1.44347i
\(296\) −15.6960 −0.912310
\(297\) 8.03572i 0.466280i
\(298\) 16.3465i 0.946928i
\(299\) 18.9150 1.09388
\(300\) −5.95789 + 1.15599i −0.343979 + 0.0667412i
\(301\) −0.734500 −0.0423359
\(302\) 5.97723i 0.343951i
\(303\) 5.47202i 0.314360i
\(304\) 22.2173 1.27425
\(305\) 10.9786 13.3135i 0.628633 0.762329i
\(306\) 32.6157 1.86452
\(307\) 2.60692i 0.148785i −0.997229 0.0743924i \(-0.976298\pi\)
0.997229 0.0743924i \(-0.0237017\pi\)
\(308\) 0.0512074i 0.00291781i
\(309\) −9.03130 −0.513773
\(310\) 12.2516 + 10.1030i 0.695846 + 0.573810i
\(311\) −19.8431 −1.12520 −0.562599 0.826730i \(-0.690199\pi\)
−0.562599 + 0.826730i \(0.690199\pi\)
\(312\) 37.9055i 2.14598i
\(313\) 18.1393i 1.02529i −0.858599 0.512647i \(-0.828665\pi\)
0.858599 0.512647i \(-0.171335\pi\)
\(314\) 4.51553 0.254826
\(315\) −2.97217 2.45092i −0.167463 0.138094i
\(316\) 0.146850 0.00826095
\(317\) 5.29542i 0.297420i −0.988881 0.148710i \(-0.952488\pi\)
0.988881 0.148710i \(-0.0475122\pi\)
\(318\) 49.7888i 2.79202i
\(319\) 4.87352 0.272865
\(320\) 12.6416 15.3302i 0.706689 0.856985i
\(321\) 20.8956 1.16628
\(322\) 1.45383i 0.0810189i
\(323\) 25.0126i 1.39174i
\(324\) 8.59522 0.477512
\(325\) 19.1134 3.70852i 1.06022 0.205712i
\(326\) −3.12505 −0.173081
\(327\) 38.5412i 2.13133i
\(328\) 14.8472i 0.819800i
\(329\) 1.64321 0.0905929
\(330\) 3.36127 4.07614i 0.185032 0.224384i
\(331\) 29.2462 1.60752 0.803760 0.594954i \(-0.202830\pi\)
0.803760 + 0.594954i \(0.202830\pi\)
\(332\) 1.98655i 0.109026i
\(333\) 38.0004i 2.08241i
\(334\) −8.07828 −0.442024
\(335\) −4.44512 3.66555i −0.242863 0.200270i
\(336\) 2.34304 0.127823
\(337\) 23.6870i 1.29031i −0.764051 0.645156i \(-0.776793\pi\)
0.764051 0.645156i \(-0.223207\pi\)
\(338\) 2.75511i 0.149858i
\(339\) −31.3165 −1.70088
\(340\) −2.27519 1.87617i −0.123390 0.101750i
\(341\) 3.21766 0.174246
\(342\) 66.8840i 3.61667i
\(343\) 3.27670i 0.176925i
\(344\) 9.46642 0.510395
\(345\) 22.2121 26.9361i 1.19586 1.45019i
\(346\) 9.12558 0.490594
\(347\) 7.92141i 0.425244i 0.977135 + 0.212622i \(0.0682002\pi\)
−0.977135 + 0.212622i \(0.931800\pi\)
\(348\) 10.2503i 0.549475i
\(349\) 25.6673 1.37394 0.686969 0.726687i \(-0.258941\pi\)
0.686969 + 0.726687i \(0.258941\pi\)
\(350\) −0.285042 1.46908i −0.0152361 0.0785258i
\(351\) −54.2208 −2.89409
\(352\) 1.21513i 0.0647665i
\(353\) 13.2644i 0.705995i −0.935624 0.352997i \(-0.885162\pi\)
0.935624 0.352997i \(-0.114838\pi\)
\(354\) 58.8376 3.12718
\(355\) −11.1284 + 13.4951i −0.590634 + 0.716247i
\(356\) −3.15953 −0.167455
\(357\) 2.63783i 0.139609i
\(358\) 9.42238i 0.497988i
\(359\) 5.67509 0.299520 0.149760 0.988722i \(-0.452150\pi\)
0.149760 + 0.988722i \(0.452150\pi\)
\(360\) 38.3061 + 31.5880i 2.01891 + 1.66484i
\(361\) 32.2926 1.69961
\(362\) 25.7196i 1.35179i
\(363\) 34.2871i 1.79961i
\(364\) 0.345520 0.0181102
\(365\) 14.0555 + 11.5905i 0.735698 + 0.606673i
\(366\) −31.5958 −1.65154
\(367\) 18.8576i 0.984361i 0.870493 + 0.492180i \(0.163800\pi\)
−0.870493 + 0.492180i \(0.836200\pi\)
\(368\) 15.0688i 0.785514i
\(369\) −35.9455 −1.87125
\(370\) 9.39141 11.3887i 0.488236 0.592073i
\(371\) 2.85752 0.148355
\(372\) 6.76760i 0.350884i
\(373\) 22.6052i 1.17045i 0.810870 + 0.585226i \(0.198994\pi\)
−0.810870 + 0.585226i \(0.801006\pi\)
\(374\) 2.56720 0.132747
\(375\) 17.1639 31.5736i 0.886342 1.63045i
\(376\) −21.1781 −1.09217
\(377\) 32.8840i 1.69361i
\(378\) 4.16748i 0.214352i
\(379\) 13.2151 0.678815 0.339408 0.940639i \(-0.389773\pi\)
0.339408 + 0.940639i \(0.389773\pi\)
\(380\) 3.84741 4.66567i 0.197368 0.239344i
\(381\) −33.1346 −1.69754
\(382\) 26.1921i 1.34011i
\(383\) 9.06658i 0.463281i −0.972801 0.231640i \(-0.925591\pi\)
0.972801 0.231640i \(-0.0744092\pi\)
\(384\) −22.8459 −1.16585
\(385\) −0.233941 0.192913i −0.0119227 0.00983176i
\(386\) 3.42434 0.174294
\(387\) 22.9185i 1.16501i
\(388\) 3.33548i 0.169333i
\(389\) −24.1714 −1.22554 −0.612768 0.790263i \(-0.709944\pi\)
−0.612768 + 0.790263i \(0.709944\pi\)
\(390\) −27.5036 22.6801i −1.39270 1.14845i
\(391\) 16.9647 0.857940
\(392\) 21.0319i 1.06227i
\(393\) 62.7402i 3.16482i
\(394\) 1.27373 0.0641694
\(395\) −0.553226 + 0.670884i −0.0278358 + 0.0337559i
\(396\) 1.59782 0.0802932
\(397\) 10.7768i 0.540870i 0.962738 + 0.270435i \(0.0871675\pi\)
−0.962738 + 0.270435i \(0.912833\pi\)
\(398\) 6.79865i 0.340785i
\(399\) 5.40933 0.270805
\(400\) 2.95442 + 15.2268i 0.147721 + 0.761342i
\(401\) 0.512588 0.0255974 0.0127987 0.999918i \(-0.495926\pi\)
0.0127987 + 0.999918i \(0.495926\pi\)
\(402\) 10.5492i 0.526148i
\(403\) 21.7111i 1.08150i
\(404\) 0.642855 0.0319832
\(405\) −32.3807 + 39.2673i −1.60901 + 1.95121i
\(406\) −2.52750 −0.125438
\(407\) 2.99103i 0.148260i
\(408\) 33.9971i 1.68311i
\(409\) −29.1701 −1.44237 −0.721183 0.692744i \(-0.756402\pi\)
−0.721183 + 0.692744i \(0.756402\pi\)
\(410\) −10.7729 8.88356i −0.532035 0.438728i
\(411\) −9.74953 −0.480909
\(412\) 1.06100i 0.0522717i
\(413\) 3.37686i 0.166164i
\(414\) −45.3637 −2.22950
\(415\) −9.07555 7.48390i −0.445501 0.367370i
\(416\) −8.19905 −0.401991
\(417\) 7.37789i 0.361297i
\(418\) 5.26448i 0.257494i
\(419\) 7.18784 0.351149 0.175574 0.984466i \(-0.443822\pi\)
0.175574 + 0.984466i \(0.443822\pi\)
\(420\) 0.405748 0.492041i 0.0197985 0.0240092i
\(421\) 16.3859 0.798598 0.399299 0.916821i \(-0.369254\pi\)
0.399299 + 0.916821i \(0.369254\pi\)
\(422\) 34.9833i 1.70296i
\(423\) 51.2727i 2.49296i
\(424\) −36.8284 −1.78855
\(425\) 17.1426 3.32613i 0.831539 0.161341i
\(426\) 32.0268 1.55171
\(427\) 1.81337i 0.0877552i
\(428\) 2.45482i 0.118658i
\(429\) −7.22330 −0.348744
\(430\) −5.66407 + 6.86868i −0.273145 + 0.331237i
\(431\) −24.6531 −1.18750 −0.593750 0.804650i \(-0.702353\pi\)
−0.593750 + 0.804650i \(0.702353\pi\)
\(432\) 43.1954i 2.07824i
\(433\) 16.5810i 0.796831i 0.917205 + 0.398415i \(0.130440\pi\)
−0.917205 + 0.398415i \(0.869560\pi\)
\(434\) −1.66874 −0.0801021
\(435\) −46.8287 38.6160i −2.24526 1.85149i
\(436\) −4.52783 −0.216844
\(437\) 34.7889i 1.66418i
\(438\) 33.3567i 1.59384i
\(439\) −14.3127 −0.683110 −0.341555 0.939862i \(-0.610954\pi\)
−0.341555 + 0.939862i \(0.610954\pi\)
\(440\) 3.01509 + 2.48631i 0.143739 + 0.118530i
\(441\) −50.9187 −2.42470
\(442\) 17.3221i 0.823929i
\(443\) 1.91828i 0.0911403i −0.998961 0.0455702i \(-0.985490\pi\)
0.998961 0.0455702i \(-0.0145105\pi\)
\(444\) 6.29095 0.298555
\(445\) 11.9029 14.4343i 0.564250 0.684252i
\(446\) −30.7908 −1.45799
\(447\) 41.2515i 1.95113i
\(448\) 2.08806i 0.0986516i
\(449\) −21.6287 −1.02072 −0.510360 0.859961i \(-0.670488\pi\)
−0.510360 + 0.859961i \(0.670488\pi\)
\(450\) −45.8395 + 8.89412i −2.16090 + 0.419273i
\(451\) −2.82929 −0.133226
\(452\) 3.67907i 0.173049i
\(453\) 15.0839i 0.708705i
\(454\) 22.7157 1.06610
\(455\) −1.30168 + 1.57851i −0.0610235 + 0.0740018i
\(456\) −69.7168 −3.26479
\(457\) 19.6638i 0.919835i 0.887962 + 0.459917i \(0.152121\pi\)
−0.887962 + 0.459917i \(0.847879\pi\)
\(458\) 33.6957i 1.57450i
\(459\) −48.6301 −2.26986
\(460\) 3.16446 + 2.60948i 0.147544 + 0.121668i
\(461\) 10.3420 0.481676 0.240838 0.970565i \(-0.422578\pi\)
0.240838 + 0.970565i \(0.422578\pi\)
\(462\) 0.555192i 0.0258299i
\(463\) 10.9518i 0.508973i 0.967076 + 0.254486i \(0.0819064\pi\)
−0.967076 + 0.254486i \(0.918094\pi\)
\(464\) 26.1972 1.21618
\(465\) −30.9178 25.4955i −1.43378 1.18233i
\(466\) −38.4193 −1.77974
\(467\) 20.9307i 0.968556i 0.874914 + 0.484278i \(0.160918\pi\)
−0.874914 + 0.484278i \(0.839082\pi\)
\(468\) 10.7812i 0.498362i
\(469\) 0.605450 0.0279571
\(470\) 12.6715 15.3665i 0.584494 0.708802i
\(471\) −11.3952 −0.525065
\(472\) 43.5218i 2.00325i
\(473\) 1.80393i 0.0829446i
\(474\) 1.59215 0.0731300
\(475\) 6.82080 + 35.1538i 0.312960 + 1.61297i
\(476\) 0.309893 0.0142039
\(477\) 89.1627i 4.08248i
\(478\) 5.84518i 0.267352i
\(479\) 20.8556 0.952916 0.476458 0.879197i \(-0.341920\pi\)
0.476458 + 0.879197i \(0.341920\pi\)
\(480\) −9.62823 + 11.6759i −0.439466 + 0.532931i
\(481\) −20.1819 −0.920216
\(482\) 30.0109i 1.36696i
\(483\) 3.66884i 0.166938i
\(484\) −4.02806 −0.183094
\(485\) 15.2381 + 12.5657i 0.691928 + 0.570579i
\(486\) 39.9825 1.81364
\(487\) 27.2853i 1.23642i −0.786015 0.618208i \(-0.787859\pi\)
0.786015 0.618208i \(-0.212141\pi\)
\(488\) 23.3712i 1.05796i
\(489\) 7.88627 0.356630
\(490\) −15.2604 12.5840i −0.689393 0.568489i
\(491\) 15.6305 0.705395 0.352697 0.935737i \(-0.385265\pi\)
0.352697 + 0.935737i \(0.385265\pi\)
\(492\) 5.95076i 0.268281i
\(493\) 29.4933i 1.32831i
\(494\) 35.5219 1.59821
\(495\) −6.01943 + 7.29963i −0.270553 + 0.328094i
\(496\) 17.2963 0.776625
\(497\) 1.83811i 0.0824506i
\(498\) 21.5382i 0.965150i
\(499\) 22.7946 1.02042 0.510212 0.860048i \(-0.329567\pi\)
0.510212 + 0.860048i \(0.329567\pi\)
\(500\) 3.70928 + 2.01642i 0.165884 + 0.0901772i
\(501\) 20.3861 0.910783
\(502\) 15.2920i 0.682515i
\(503\) 21.7516i 0.969858i 0.874554 + 0.484929i \(0.161155\pi\)
−0.874554 + 0.484929i \(0.838845\pi\)
\(504\) −5.21750 −0.232406
\(505\) −2.42182 + 2.93689i −0.107770 + 0.130690i
\(506\) −3.57060 −0.158733
\(507\) 6.95270i 0.308780i
\(508\) 3.89267i 0.172709i
\(509\) 36.9506 1.63781 0.818904 0.573930i \(-0.194582\pi\)
0.818904 + 0.573930i \(0.194582\pi\)
\(510\) −24.6677 20.3415i −1.09230 0.900739i
\(511\) −1.91444 −0.0846896
\(512\) 25.3212i 1.11905i
\(513\) 99.7242i 4.40293i
\(514\) −17.9856 −0.793312
\(515\) 4.84718 + 3.99709i 0.213592 + 0.176133i
\(516\) −3.79414 −0.167028
\(517\) 4.03570i 0.177490i
\(518\) 1.55121i 0.0681562i
\(519\) −23.0290 −1.01086
\(520\) 16.7763 20.3443i 0.735691 0.892155i
\(521\) 0.0246447 0.00107970 0.000539852 1.00000i \(-0.499828\pi\)
0.000539852 1.00000i \(0.499828\pi\)
\(522\) 78.8653i 3.45184i
\(523\) 21.2265i 0.928168i 0.885791 + 0.464084i \(0.153616\pi\)
−0.885791 + 0.464084i \(0.846384\pi\)
\(524\) 7.37074 0.321992
\(525\) 0.719322 + 3.70733i 0.0313938 + 0.161801i
\(526\) −13.1636 −0.573962
\(527\) 19.4724i 0.848231i
\(528\) 5.75449i 0.250432i
\(529\) −0.595377 −0.0258860
\(530\) 22.0356 26.7221i 0.957167 1.16073i
\(531\) −105.368 −4.57256
\(532\) 0.635489i 0.0275520i
\(533\) 19.0906i 0.826904i
\(534\) −34.2557 −1.48239
\(535\) −11.2149 9.24804i −0.484861 0.399827i
\(536\) −7.80319 −0.337047
\(537\) 23.7780i 1.02610i
\(538\) 19.1382i 0.825106i
\(539\) −4.00784 −0.172630
\(540\) −9.07108 7.48022i −0.390357 0.321897i
\(541\) −25.2530 −1.08571 −0.542855 0.839827i \(-0.682657\pi\)
−0.542855 + 0.839827i \(0.682657\pi\)
\(542\) 3.90897i 0.167905i
\(543\) 64.9051i 2.78535i
\(544\) −7.35363 −0.315284
\(545\) 17.0576 20.6854i 0.730669 0.886065i
\(546\) 3.74615 0.160320
\(547\) 12.9296i 0.552830i −0.961038 0.276415i \(-0.910854\pi\)
0.961038 0.276415i \(-0.0891464\pi\)
\(548\) 1.14538i 0.0489281i
\(549\) 56.5823 2.41488
\(550\) −3.60806 + 0.700061i −0.153848 + 0.0298507i
\(551\) 60.4809 2.57657
\(552\) 47.2850i 2.01258i
\(553\) 0.0913781i 0.00388579i
\(554\) −41.1443 −1.74806
\(555\) −23.6998 + 28.7402i −1.00600 + 1.21996i
\(556\) −0.866757 −0.0367587
\(557\) 9.53791i 0.404134i −0.979372 0.202067i \(-0.935234\pi\)
0.979372 0.202067i \(-0.0647659\pi\)
\(558\) 52.0694i 2.20427i
\(559\) 12.1719 0.514818
\(560\) −1.25753 1.03699i −0.0531404 0.0438208i
\(561\) −6.47850 −0.273522
\(562\) 37.3905i 1.57722i
\(563\) 16.4517i 0.693356i −0.937984 0.346678i \(-0.887310\pi\)
0.937984 0.346678i \(-0.112690\pi\)
\(564\) 8.48817 0.357417
\(565\) 16.8079 + 13.8601i 0.707112 + 0.583100i
\(566\) 19.5482 0.821671
\(567\) 5.34842i 0.224613i
\(568\) 23.6900i 0.994012i
\(569\) −33.1531 −1.38985 −0.694926 0.719082i \(-0.744563\pi\)
−0.694926 + 0.719082i \(0.744563\pi\)
\(570\) 41.7138 50.5853i 1.74720 2.11879i
\(571\) −21.2096 −0.887595 −0.443798 0.896127i \(-0.646369\pi\)
−0.443798 + 0.896127i \(0.646369\pi\)
\(572\) 0.848596i 0.0354816i
\(573\) 66.0976i 2.76127i
\(574\) 1.46733 0.0612450
\(575\) −23.8429 + 4.62617i −0.994317 + 0.192925i
\(576\) 65.1534 2.71472
\(577\) 3.39956i 0.141526i 0.997493 + 0.0707628i \(0.0225433\pi\)
−0.997493 + 0.0707628i \(0.977457\pi\)
\(578\) 6.11733i 0.254448i
\(579\) −8.64155 −0.359130
\(580\) 4.53662 5.50145i 0.188373 0.228435i
\(581\) 1.23614 0.0512837
\(582\) 36.1634i 1.49902i
\(583\) 7.01805i 0.290658i
\(584\) 24.6737 1.02101
\(585\) 49.2540 + 40.6160i 2.03640 + 1.67926i
\(586\) −32.7563 −1.35315
\(587\) 37.5978i 1.55183i 0.630839 + 0.775914i \(0.282711\pi\)
−0.630839 + 0.775914i \(0.717289\pi\)
\(588\) 8.42958i 0.347630i
\(589\) 39.9315 1.64535
\(590\) −31.5787 26.0405i −1.30008 1.07207i
\(591\) −3.21433 −0.132220
\(592\) 16.0781i 0.660804i
\(593\) 17.6880i 0.726360i 0.931719 + 0.363180i \(0.118309\pi\)
−0.931719 + 0.363180i \(0.881691\pi\)
\(594\) 10.2353 0.419960
\(595\) −1.16746 + 1.41575i −0.0478611 + 0.0580401i
\(596\) −4.84624 −0.198510
\(597\) 17.1568i 0.702183i
\(598\) 24.0925i 0.985217i
\(599\) −2.70489 −0.110519 −0.0552595 0.998472i \(-0.517599\pi\)
−0.0552595 + 0.998472i \(0.517599\pi\)
\(600\) −9.27081 47.7810i −0.378479 1.95065i
\(601\) −26.9989 −1.10131 −0.550654 0.834733i \(-0.685622\pi\)
−0.550654 + 0.834733i \(0.685622\pi\)
\(602\) 0.935552i 0.0381302i
\(603\) 18.8918i 0.769332i
\(604\) −1.77206 −0.0721043
\(605\) 15.1749 18.4022i 0.616947 0.748157i
\(606\) 6.96986 0.283131
\(607\) 6.45409i 0.261964i 0.991385 + 0.130982i \(0.0418129\pi\)
−0.991385 + 0.130982i \(0.958187\pi\)
\(608\) 15.0799i 0.611570i
\(609\) 6.37833 0.258463
\(610\) 16.9578 + 13.9837i 0.686600 + 0.566185i
\(611\) −27.2308 −1.10164
\(612\) 9.66956i 0.390869i
\(613\) 9.63640i 0.389211i 0.980882 + 0.194605i \(0.0623426\pi\)
−0.980882 + 0.194605i \(0.937657\pi\)
\(614\) 3.32050 0.134005
\(615\) 27.1861 + 22.4183i 1.09625 + 0.903992i
\(616\) −0.410672 −0.0165465
\(617\) 8.69198i 0.349926i −0.984575 0.174963i \(-0.944019\pi\)
0.984575 0.174963i \(-0.0559806\pi\)
\(618\) 11.5034i 0.462735i
\(619\) 22.1646 0.890870 0.445435 0.895314i \(-0.353049\pi\)
0.445435 + 0.895314i \(0.353049\pi\)
\(620\) 2.99522 3.63224i 0.120291 0.145874i
\(621\) 67.6373 2.71419
\(622\) 25.2747i 1.01342i
\(623\) 1.96603i 0.0787675i
\(624\) −38.8283 −1.55438
\(625\) −23.1860 + 9.34939i −0.927439 + 0.373976i
\(626\) 23.1045 0.923443
\(627\) 13.2853i 0.530562i
\(628\) 1.33872i 0.0534206i
\(629\) −18.1009 −0.721732
\(630\) 3.12180 3.78573i 0.124375 0.150827i
\(631\) −2.65768 −0.105800 −0.0529002 0.998600i \(-0.516847\pi\)
−0.0529002 + 0.998600i \(0.516847\pi\)
\(632\) 1.17770i 0.0468466i
\(633\) 88.2827i 3.50892i
\(634\) 6.74492 0.267875
\(635\) 17.7837 + 14.6648i 0.705723 + 0.581955i
\(636\) 14.7608 0.585306
\(637\) 27.0428i 1.07148i
\(638\) 6.20753i 0.245759i
\(639\) −57.3543 −2.26890
\(640\) 12.2616 + 10.1112i 0.484682 + 0.399680i
\(641\) 27.4000 1.08224 0.541118 0.840946i \(-0.318001\pi\)
0.541118 + 0.840946i \(0.318001\pi\)
\(642\) 26.6153i 1.05042i
\(643\) 26.5633i 1.04755i −0.851856 0.523777i \(-0.824523\pi\)
0.851856 0.523777i \(-0.175477\pi\)
\(644\) −0.431017 −0.0169844
\(645\) 14.2936 17.3336i 0.562812 0.682509i
\(646\) 31.8592 1.25349
\(647\) 25.6395i 1.00799i 0.863706 + 0.503996i \(0.168137\pi\)
−0.863706 + 0.503996i \(0.831863\pi\)
\(648\) 68.9318i 2.70790i
\(649\) −8.29354 −0.325550
\(650\) 4.72364 + 24.3453i 0.185277 + 0.954900i
\(651\) 4.21118 0.165049
\(652\) 0.926482i 0.0362838i
\(653\) 17.4067i 0.681179i 0.940212 + 0.340589i \(0.110627\pi\)
−0.940212 + 0.340589i \(0.889373\pi\)
\(654\) −49.0909 −1.91961
\(655\) −27.7677 + 33.6733i −1.08497 + 1.31572i
\(656\) −15.2086 −0.593797
\(657\) 59.7358i 2.33052i
\(658\) 2.09299i 0.0815934i
\(659\) −18.2733 −0.711827 −0.355913 0.934519i \(-0.615830\pi\)
−0.355913 + 0.934519i \(0.615830\pi\)
\(660\) −1.20845 0.996515i −0.0470389 0.0387893i
\(661\) 13.4912 0.524748 0.262374 0.964966i \(-0.415495\pi\)
0.262374 + 0.964966i \(0.415495\pi\)
\(662\) 37.2517i 1.44783i
\(663\) 43.7135i 1.69769i
\(664\) −15.9317 −0.618269
\(665\) −2.90324 2.39407i −0.112583 0.0928382i
\(666\) 48.4021 1.87554
\(667\) 41.0208i 1.58833i
\(668\) 2.39496i 0.0926639i
\(669\) 77.7026 3.00416
\(670\) 4.66890 5.66187i 0.180375 0.218737i
\(671\) 4.45363 0.171930
\(672\) 1.59033i 0.0613481i
\(673\) 24.5543i 0.946497i −0.880929 0.473249i \(-0.843081\pi\)
0.880929 0.473249i \(-0.156919\pi\)
\(674\) 30.1707 1.16213
\(675\) 68.3468 13.2611i 2.63067 0.510422i
\(676\) −0.816805 −0.0314156
\(677\) 21.6592i 0.832429i −0.909266 0.416215i \(-0.863356\pi\)
0.909266 0.416215i \(-0.136644\pi\)
\(678\) 39.8887i 1.53191i
\(679\) −2.07552 −0.0796511
\(680\) 15.0465 18.2465i 0.577007 0.699723i
\(681\) −57.3245 −2.19668
\(682\) 4.09841i 0.156936i
\(683\) 21.0697i 0.806209i 0.915154 + 0.403105i \(0.132069\pi\)
−0.915154 + 0.403105i \(0.867931\pi\)
\(684\) 19.8291 0.758183
\(685\) 5.23266 + 4.31497i 0.199930 + 0.164867i
\(686\) 4.17362 0.159349
\(687\) 85.0334i 3.24423i
\(688\) 9.69686i 0.369689i
\(689\) −47.3541 −1.80405
\(690\) 34.3092 + 28.2921i 1.30613 + 1.07706i
\(691\) 22.7420 0.865146 0.432573 0.901599i \(-0.357606\pi\)
0.432573 + 0.901599i \(0.357606\pi\)
\(692\) 2.70545i 0.102846i
\(693\) 0.994249i 0.0377684i
\(694\) −10.0897 −0.383000
\(695\) 3.26533 3.95978i 0.123861 0.150203i
\(696\) −82.2055 −3.11599
\(697\) 17.1221i 0.648547i
\(698\) 32.6931i 1.23745i
\(699\) 96.9536 3.66712
\(700\) −0.435538 + 0.0845062i −0.0164618 + 0.00319403i
\(701\) −35.8276 −1.35319 −0.676596 0.736355i \(-0.736545\pi\)
−0.676596 + 0.736355i \(0.736545\pi\)
\(702\) 69.0625i 2.60660i
\(703\) 37.1191i 1.39997i
\(704\) 5.12826 0.193279
\(705\) −31.9774 + 38.7783i −1.20434 + 1.46047i
\(706\) 16.8953 0.635862
\(707\) 0.400020i 0.0150443i
\(708\) 17.4436i 0.655569i
\(709\) 18.4033 0.691152 0.345576 0.938391i \(-0.387684\pi\)
0.345576 + 0.938391i \(0.387684\pi\)
\(710\) −17.1891 14.1745i −0.645096 0.531960i
\(711\) −2.85126 −0.106930
\(712\) 25.3387i 0.949609i
\(713\) 27.0833i 1.01428i
\(714\) 3.35988 0.125740
\(715\) 3.87681 + 3.19691i 0.144985 + 0.119558i
\(716\) 2.79345 0.104396
\(717\) 14.7507i 0.550875i
\(718\) 7.22852i 0.269766i
\(719\) −22.9617 −0.856326 −0.428163 0.903702i \(-0.640839\pi\)
−0.428163 + 0.903702i \(0.640839\pi\)
\(720\) −32.3570 + 39.2386i −1.20587 + 1.46234i
\(721\) −0.660213 −0.0245876
\(722\) 41.1320i 1.53077i
\(723\) 75.7345i 2.81659i
\(724\) −7.62507 −0.283384
\(725\) 8.04265 + 41.4511i 0.298696 + 1.53946i
\(726\) −43.6724 −1.62084
\(727\) 19.2162i 0.712691i −0.934354 0.356345i \(-0.884023\pi\)
0.934354 0.356345i \(-0.115977\pi\)
\(728\) 2.77100i 0.102700i
\(729\) −32.6140 −1.20792
\(730\) −14.7631 + 17.9029i −0.546406 + 0.662614i
\(731\) 10.9169 0.403776
\(732\) 9.36718i 0.346221i
\(733\) 0.407800i 0.0150624i 0.999972 + 0.00753122i \(0.00239728\pi\)
−0.999972 + 0.00753122i \(0.997603\pi\)
\(734\) −24.0195 −0.886575
\(735\) 38.5106 + 31.7567i 1.42048 + 1.17136i
\(736\) 10.2278 0.377003
\(737\) 1.48698i 0.0547736i
\(738\) 45.7847i 1.68536i
\(739\) 23.3824 0.860135 0.430068 0.902797i \(-0.358490\pi\)
0.430068 + 0.902797i \(0.358490\pi\)
\(740\) −3.37641 2.78427i −0.124119 0.102352i
\(741\) −89.6420 −3.29308
\(742\) 3.63970i 0.133618i
\(743\) 49.3094i 1.80899i −0.426488 0.904493i \(-0.640249\pi\)
0.426488 0.904493i \(-0.359751\pi\)
\(744\) −54.2747 −1.98981
\(745\) 18.2572 22.1401i 0.668892 0.811149i
\(746\) −28.7928 −1.05418
\(747\) 38.5710i 1.41124i
\(748\) 0.761096i 0.0278284i
\(749\) 1.52753 0.0558146
\(750\) 40.2161 + 21.8622i 1.46849 + 0.798293i
\(751\) 0.947118 0.0345608 0.0172804 0.999851i \(-0.494499\pi\)
0.0172804 + 0.999851i \(0.494499\pi\)
\(752\) 21.6936i 0.791084i
\(753\) 38.5903i 1.40631i
\(754\) 41.8852 1.52537
\(755\) 6.67588 8.09569i 0.242960 0.294632i
\(756\) 1.23553 0.0449358
\(757\) 42.8580i 1.55770i 0.627210 + 0.778850i \(0.284197\pi\)
−0.627210 + 0.778850i \(0.715803\pi\)
\(758\) 16.8325i 0.611382i
\(759\) 9.01065 0.327066
\(760\) 37.4176 + 30.8554i 1.35728 + 1.11924i
\(761\) −14.6514 −0.531113 −0.265556 0.964095i \(-0.585556\pi\)
−0.265556 + 0.964095i \(0.585556\pi\)
\(762\) 42.2045i 1.52891i
\(763\) 2.81747i 0.101999i
\(764\) −7.76517 −0.280934
\(765\) 44.1754 + 36.4280i 1.59717 + 1.31706i
\(766\) 11.5483 0.417259
\(767\) 55.9604i 2.02061i
\(768\) 28.0273i 1.01135i
\(769\) 0.134376 0.00484571 0.00242285 0.999997i \(-0.499229\pi\)
0.00242285 + 0.999997i \(0.499229\pi\)
\(770\) 0.245718 0.297977i 0.00885508 0.0107383i
\(771\) 45.3879 1.63461
\(772\) 1.01521i 0.0365383i
\(773\) 15.4519i 0.555767i −0.960615 0.277884i \(-0.910367\pi\)
0.960615 0.277884i \(-0.0896329\pi\)
\(774\) −29.1919 −1.04928
\(775\) 5.31002 + 27.3674i 0.190741 + 0.983065i
\(776\) 26.7498 0.960262
\(777\) 3.91458i 0.140435i
\(778\) 30.7877i 1.10379i
\(779\) −35.1118 −1.25801
\(780\) −6.72396 + 8.15399i −0.240756 + 0.291960i
\(781\) −4.51439 −0.161538
\(782\) 21.6083i 0.772713i
\(783\) 117.588i 4.20226i
\(784\) −21.5438 −0.769423
\(785\) 6.11594 + 5.04334i 0.218287 + 0.180004i
\(786\) 79.9139 2.85043
\(787\) 42.6277i 1.51951i 0.650207 + 0.759757i \(0.274682\pi\)
−0.650207 + 0.759757i \(0.725318\pi\)
\(788\) 0.377621i 0.0134522i
\(789\) 33.2193 1.18264
\(790\) −0.854523 0.704659i −0.0304026 0.0250706i
\(791\) −2.28932 −0.0813989
\(792\) 12.8141i 0.455330i
\(793\) 30.0507i 1.06713i
\(794\) −13.7266 −0.487140
\(795\) −55.6084 + 67.4350i −1.97223 + 2.39167i
\(796\) 2.01559 0.0714407
\(797\) 11.6332i 0.412069i −0.978545 0.206035i \(-0.933944\pi\)
0.978545 0.206035i \(-0.0660559\pi\)
\(798\) 6.89000i 0.243903i
\(799\) −24.4230 −0.864024
\(800\) 10.3351 2.00530i 0.365402 0.0708979i
\(801\) 61.3458 2.16755
\(802\) 0.652897i 0.0230546i
\(803\) 4.70184i 0.165924i
\(804\) 3.12752 0.110299
\(805\) 1.62377 1.96910i 0.0572302 0.0694017i
\(806\) 27.6539 0.974069
\(807\) 48.2965i 1.70012i
\(808\) 5.15556i 0.181372i
\(809\) 37.3413 1.31285 0.656425 0.754391i \(-0.272068\pi\)
0.656425 + 0.754391i \(0.272068\pi\)
\(810\) −50.0158 41.2441i −1.75738 1.44917i
\(811\) −9.00258 −0.316123 −0.158062 0.987429i \(-0.550524\pi\)
−0.158062 + 0.987429i \(0.550524\pi\)
\(812\) 0.749328i 0.0262962i
\(813\) 9.86455i 0.345965i
\(814\) 3.80976 0.133532
\(815\) −4.23264 3.49033i −0.148263 0.122261i
\(816\) −34.8247 −1.21911
\(817\) 22.3869i 0.783219i
\(818\) 37.1547i 1.29908i
\(819\) −6.70867 −0.234420
\(820\) −2.63370 + 3.19383i −0.0919729 + 0.111533i
\(821\) 8.55499 0.298571 0.149286 0.988794i \(-0.452303\pi\)
0.149286 + 0.988794i \(0.452303\pi\)
\(822\) 12.4182i 0.433136i
\(823\) 27.1990i 0.948097i 0.880499 + 0.474049i \(0.157208\pi\)
−0.880499 + 0.474049i \(0.842792\pi\)
\(824\) 8.50899 0.296425
\(825\) 9.10517 1.76665i 0.317001 0.0615069i
\(826\) 4.30119 0.149658
\(827\) 8.38311i 0.291509i 0.989321 + 0.145755i \(0.0465610\pi\)
−0.989321 + 0.145755i \(0.953439\pi\)
\(828\) 13.4489i 0.467383i
\(829\) −37.2591 −1.29406 −0.647030 0.762464i \(-0.723989\pi\)
−0.647030 + 0.762464i \(0.723989\pi\)
\(830\) 9.53244 11.5598i 0.330876 0.401245i
\(831\) 103.830 3.60184
\(832\) 34.6028i 1.19964i
\(833\) 24.2544i 0.840365i
\(834\) −9.39741 −0.325406
\(835\) −10.9414 9.02252i −0.378643 0.312237i
\(836\) 1.56076 0.0539799
\(837\) 77.6356i 2.68348i
\(838\) 9.15534i 0.316266i
\(839\) 12.5348 0.432750 0.216375 0.976310i \(-0.430577\pi\)
0.216375 + 0.976310i \(0.430577\pi\)
\(840\) 3.94607 + 3.25401i 0.136152 + 0.112274i
\(841\) 42.3152 1.45914
\(842\) 20.8711i 0.719265i
\(843\) 94.3573i 3.24984i
\(844\) −10.3715 −0.357001
\(845\) 3.07714 3.73158i 0.105857 0.128370i
\(846\) 65.3074 2.24531
\(847\) 2.50649i 0.0861239i
\(848\) 37.7250i 1.29548i
\(849\) −49.3311 −1.69304
\(850\) 4.23658 + 21.8350i 0.145314 + 0.748934i
\(851\) 25.1758 0.863015
\(852\) 9.49498i 0.325293i
\(853\) 20.8885i 0.715210i 0.933873 + 0.357605i \(0.116407\pi\)
−0.933873 + 0.357605i \(0.883593\pi\)
\(854\) −2.30974 −0.0790377
\(855\) −74.7019 + 90.5892i −2.55475 + 3.09809i
\(856\) −19.6872 −0.672893
\(857\) 30.0053i 1.02496i 0.858699 + 0.512481i \(0.171273\pi\)
−0.858699 + 0.512481i \(0.828727\pi\)
\(858\) 9.20051i 0.314100i
\(859\) −44.8428 −1.53002 −0.765008 0.644020i \(-0.777265\pi\)
−0.765008 + 0.644020i \(0.777265\pi\)
\(860\) 2.03635 + 1.67922i 0.0694391 + 0.0572610i
\(861\) −3.70290 −0.126194
\(862\) 31.4013i 1.06953i
\(863\) 10.1816i 0.346586i −0.984870 0.173293i \(-0.944559\pi\)
0.984870 0.173293i \(-0.0554407\pi\)
\(864\) −29.3186 −0.997439
\(865\) 12.3599 + 10.1922i 0.420249 + 0.346546i
\(866\) −21.1196 −0.717674
\(867\) 15.4375i 0.524285i
\(868\) 0.494730i 0.0167922i
\(869\) −0.224424 −0.00761306
\(870\) 49.1862 59.6470i 1.66757 2.02222i
\(871\) −10.0334 −0.339968
\(872\) 36.3122i 1.22969i
\(873\) 64.7620i 2.19186i
\(874\) −44.3116 −1.49886
\(875\) 1.25473 2.30812i 0.0424176 0.0780286i
\(876\) −9.88924 −0.334126
\(877\) 35.3951i 1.19521i 0.801792 + 0.597604i \(0.203880\pi\)
−0.801792 + 0.597604i \(0.796120\pi\)
\(878\) 18.2305i 0.615250i
\(879\) 82.6628 2.78815
\(880\) −2.54684 + 3.08849i −0.0858539 + 0.104113i
\(881\) 46.3047 1.56005 0.780023 0.625750i \(-0.215207\pi\)
0.780023 + 0.625750i \(0.215207\pi\)
\(882\) 64.8565i 2.18383i
\(883\) 36.2361i 1.21944i −0.792616 0.609722i \(-0.791281\pi\)
0.792616 0.609722i \(-0.208719\pi\)
\(884\) −5.13548 −0.172725
\(885\) 79.6910 + 65.7149i 2.67878 + 2.20898i
\(886\) 2.44337 0.0820865
\(887\) 26.9498i 0.904887i −0.891793 0.452443i \(-0.850552\pi\)
0.891793 0.452443i \(-0.149448\pi\)
\(888\) 50.4521i 1.69306i
\(889\) −2.42223 −0.0812391
\(890\) 18.3854 + 15.1610i 0.616279 + 0.508198i
\(891\) −13.1357 −0.440062
\(892\) 9.12853i 0.305646i
\(893\) 50.0835i 1.67598i
\(894\) −52.5431 −1.75731
\(895\) −10.5237 + 12.7619i −0.351769 + 0.426582i
\(896\) −1.67010 −0.0557940
\(897\) 60.7991i 2.03002i
\(898\) 27.5490i 0.919322i
\(899\) 47.0846 1.57036
\(900\) 2.63683 + 13.5900i 0.0878945 + 0.453001i
\(901\) −42.4714 −1.41493
\(902\) 3.60374i 0.119992i
\(903\) 2.36093i 0.0785667i
\(904\) 29.5054 0.981334
\(905\) 28.7259 34.8352i 0.954880 1.15796i
\(906\) −19.2128 −0.638303
\(907\) 5.26836i 0.174933i 0.996167 + 0.0874664i \(0.0278771\pi\)
−0.996167 + 0.0874664i \(0.972123\pi\)
\(908\) 6.73449i 0.223492i
\(909\) −12.4818 −0.413994
\(910\) −2.01059 1.65798i −0.0666505 0.0549615i
\(911\) 20.8539 0.690919 0.345459 0.938434i \(-0.387723\pi\)
0.345459 + 0.938434i \(0.387723\pi\)
\(912\) 71.4139i 2.36475i
\(913\) 3.03595i 0.100475i
\(914\) −25.0463 −0.828459
\(915\) −42.7940 35.2889i −1.41473 1.16662i
\(916\) 9.98975 0.330070
\(917\) 4.58648i 0.151459i
\(918\) 61.9414i 2.04437i
\(919\) 9.82871 0.324219 0.162110 0.986773i \(-0.448170\pi\)
0.162110 + 0.986773i \(0.448170\pi\)
\(920\) −20.9275 + 25.3783i −0.689959 + 0.836698i
\(921\) −8.37951 −0.276114
\(922\) 13.1729i 0.433827i
\(923\) 30.4607i 1.00263i
\(924\) 0.164598 0.00541486
\(925\) 25.4399 4.93603i 0.836457 0.162296i
\(926\) −13.9496 −0.458412
\(927\) 20.6005i 0.676610i
\(928\) 17.7812i 0.583697i
\(929\) −14.8642 −0.487677 −0.243839 0.969816i \(-0.578407\pi\)
−0.243839 + 0.969816i \(0.578407\pi\)
\(930\) 32.4743 39.3809i 1.06487 1.29135i
\(931\) −49.7378 −1.63009
\(932\) 11.3901i 0.373096i
\(933\) 63.7823i 2.08814i
\(934\) −26.6599 −0.872340
\(935\) 3.47707 + 2.86727i 0.113712 + 0.0937698i
\(936\) 86.4630 2.82613
\(937\) 56.7633i 1.85438i 0.374594 + 0.927189i \(0.377782\pi\)
−0.374594 + 0.927189i \(0.622218\pi\)
\(938\) 0.771178i 0.0251798i
\(939\) −58.3058 −1.90274
\(940\) −4.55568 3.75672i −0.148590 0.122531i
\(941\) −10.6242 −0.346341 −0.173170 0.984892i \(-0.555401\pi\)
−0.173170 + 0.984892i \(0.555401\pi\)
\(942\) 14.5144i 0.472905i
\(943\) 23.8144i 0.775503i
\(944\) −44.5813 −1.45100
\(945\) −4.65461 + 5.64453i −0.151414 + 0.183617i
\(946\) −2.29771 −0.0747049
\(947\) 35.9492i 1.16819i 0.811685 + 0.584095i \(0.198551\pi\)
−0.811685 + 0.584095i \(0.801449\pi\)
\(948\) 0.472024i 0.0153306i
\(949\) 31.7255 1.02985
\(950\) −44.7764 + 8.68784i −1.45274 + 0.281871i
\(951\) −17.0212 −0.551952
\(952\) 2.48528i 0.0805484i
\(953\) 54.1752i 1.75491i 0.479661 + 0.877454i \(0.340760\pi\)
−0.479661 + 0.877454i \(0.659240\pi\)
\(954\) 113.569 3.67693
\(955\) 29.2536 35.4752i 0.946626 1.14795i
\(956\) −1.73292 −0.0560466
\(957\) 15.6651i 0.506381i
\(958\) 26.5643i 0.858254i
\(959\) −0.712717 −0.0230148
\(960\) −49.2764 40.6344i −1.59039 1.31147i
\(961\) 0.0867807 0.00279938
\(962\) 25.7062i 0.828803i
\(963\) 47.6632i 1.53592i
\(964\) 8.89731 0.286563
\(965\) 4.63800 + 3.82460i 0.149302 + 0.123118i
\(966\) −4.67310 −0.150355
\(967\) 5.91237i 0.190129i −0.995471 0.0950645i \(-0.969694\pi\)
0.995471 0.0950645i \(-0.0303057\pi\)
\(968\) 32.3042i 1.03830i
\(969\) −80.3989 −2.58279
\(970\) −16.0053 + 19.4092i −0.513898 + 0.623192i
\(971\) −25.0906 −0.805195 −0.402597 0.915377i \(-0.631893\pi\)
−0.402597 + 0.915377i \(0.631893\pi\)
\(972\) 11.8536i 0.380204i
\(973\) 0.539344i 0.0172906i
\(974\) 34.7540 1.11359
\(975\) −11.9204 61.4369i −0.381759 1.96755i
\(976\) 23.9401 0.766305
\(977\) 49.9680i 1.59862i −0.600920 0.799309i \(-0.705199\pi\)
0.600920 0.799309i \(-0.294801\pi\)
\(978\) 10.0450i 0.321202i
\(979\) 4.82856 0.154322
\(980\) −3.73078 + 4.52423i −0.119175 + 0.144521i
\(981\) 87.9129 2.80684
\(982\) 19.9090i 0.635321i
\(983\) 43.1014i 1.37472i −0.726316 0.687361i \(-0.758769\pi\)
0.726316 0.687361i \(-0.241231\pi\)
\(984\) 47.7239 1.52138
\(985\) 1.72516 + 1.42261i 0.0549683 + 0.0453280i
\(986\) 37.5663 1.19636
\(987\) 5.28181i 0.168122i
\(988\) 10.5312i 0.335041i
\(989\) −15.1838 −0.482817
\(990\) −9.29773 7.66711i −0.295501 0.243677i
\(991\) −39.3870 −1.25117 −0.625585 0.780156i \(-0.715140\pi\)
−0.625585 + 0.780156i \(0.715140\pi\)
\(992\) 11.7397i 0.372737i
\(993\) 94.0072i 2.98323i
\(994\) 2.34125 0.0742600
\(995\) −7.59332 + 9.20824i −0.240724 + 0.291921i
\(996\) 6.38542 0.202330
\(997\) 53.8563i 1.70565i −0.522200 0.852823i \(-0.674888\pi\)
0.522200 0.852823i \(-0.325112\pi\)
\(998\) 29.0340i 0.919056i
\(999\) −72.1676 −2.28328
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 985.2.b.a.789.68 yes 98
5.2 odd 4 4925.2.a.r.1.17 49
5.3 odd 4 4925.2.a.s.1.33 49
5.4 even 2 inner 985.2.b.a.789.31 98
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.31 98 5.4 even 2 inner
985.2.b.a.789.68 yes 98 1.1 even 1 trivial
4925.2.a.r.1.17 49 5.2 odd 4
4925.2.a.s.1.33 49 5.3 odd 4