Properties

Label 4925.2.a.r.1.17
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.27373 q^{2} -3.21433 q^{3} -0.377621 q^{4} +4.09418 q^{6} +0.234977 q^{7} +3.02844 q^{8} +7.33194 q^{9} -0.577101 q^{11} +1.21380 q^{12} +3.89397 q^{13} -0.299296 q^{14} -3.10216 q^{16} -3.49246 q^{17} -9.33888 q^{18} +7.16189 q^{19} -0.755293 q^{21} +0.735069 q^{22} -4.85751 q^{23} -9.73441 q^{24} -4.95986 q^{26} -13.9243 q^{27} -0.0887321 q^{28} +8.44483 q^{29} -5.57555 q^{31} -2.10557 q^{32} +1.85499 q^{33} +4.44844 q^{34} -2.76869 q^{36} -5.18286 q^{37} -9.12229 q^{38} -12.5165 q^{39} +4.90259 q^{41} +0.962037 q^{42} -3.12584 q^{43} +0.217925 q^{44} +6.18714 q^{46} -6.99306 q^{47} +9.97138 q^{48} -6.94479 q^{49} +11.2259 q^{51} -1.47045 q^{52} +12.1609 q^{53} +17.7357 q^{54} +0.711612 q^{56} -23.0207 q^{57} -10.7564 q^{58} -14.3710 q^{59} -7.71724 q^{61} +7.10173 q^{62} +1.72283 q^{63} +8.88625 q^{64} -2.36276 q^{66} -2.57664 q^{67} +1.31883 q^{68} +15.6136 q^{69} +7.82253 q^{71} +22.2043 q^{72} -8.14734 q^{73} +6.60155 q^{74} -2.70448 q^{76} -0.135605 q^{77} +15.9426 q^{78} -0.388882 q^{79} +22.7615 q^{81} -6.24456 q^{82} +5.26069 q^{83} +0.285214 q^{84} +3.98147 q^{86} -27.1445 q^{87} -1.74771 q^{88} +8.36693 q^{89} +0.914993 q^{91} +1.83430 q^{92} +17.9217 q^{93} +8.90725 q^{94} +6.76801 q^{96} +8.83287 q^{97} +8.84576 q^{98} -4.23127 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q - 5 q^{2} - 22 q^{3} + 49 q^{4} + 2 q^{6} - 32 q^{7} - 15 q^{8} + 51 q^{9} - 2 q^{11} - 44 q^{12} - 32 q^{13} - 8 q^{14} + 49 q^{16} - 14 q^{17} - 25 q^{18} + 4 q^{19} + 10 q^{21} - 38 q^{22} - 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27373 −0.900661 −0.450330 0.892862i \(-0.648694\pi\)
−0.450330 + 0.892862i \(0.648694\pi\)
\(3\) −3.21433 −1.85580 −0.927898 0.372834i \(-0.878386\pi\)
−0.927898 + 0.372834i \(0.878386\pi\)
\(4\) −0.377621 −0.188810
\(5\) 0 0
\(6\) 4.09418 1.67144
\(7\) 0.234977 0.0888128 0.0444064 0.999014i \(-0.485860\pi\)
0.0444064 + 0.999014i \(0.485860\pi\)
\(8\) 3.02844 1.07071
\(9\) 7.33194 2.44398
\(10\) 0 0
\(11\) −0.577101 −0.174002 −0.0870012 0.996208i \(-0.527728\pi\)
−0.0870012 + 0.996208i \(0.527728\pi\)
\(12\) 1.21380 0.350394
\(13\) 3.89397 1.07999 0.539997 0.841667i \(-0.318425\pi\)
0.539997 + 0.841667i \(0.318425\pi\)
\(14\) −0.299296 −0.0799902
\(15\) 0 0
\(16\) −3.10216 −0.775540
\(17\) −3.49246 −0.847047 −0.423523 0.905885i \(-0.639207\pi\)
−0.423523 + 0.905885i \(0.639207\pi\)
\(18\) −9.33888 −2.20120
\(19\) 7.16189 1.64305 0.821525 0.570173i \(-0.193124\pi\)
0.821525 + 0.570173i \(0.193124\pi\)
\(20\) 0 0
\(21\) −0.755293 −0.164818
\(22\) 0.735069 0.156717
\(23\) −4.85751 −1.01286 −0.506430 0.862281i \(-0.669035\pi\)
−0.506430 + 0.862281i \(0.669035\pi\)
\(24\) −9.73441 −1.98703
\(25\) 0 0
\(26\) −4.95986 −0.972708
\(27\) −13.9243 −2.67973
\(28\) −0.0887321 −0.0167688
\(29\) 8.44483 1.56817 0.784083 0.620656i \(-0.213134\pi\)
0.784083 + 0.620656i \(0.213134\pi\)
\(30\) 0 0
\(31\) −5.57555 −1.00140 −0.500699 0.865621i \(-0.666924\pi\)
−0.500699 + 0.865621i \(0.666924\pi\)
\(32\) −2.10557 −0.372216
\(33\) 1.85499 0.322913
\(34\) 4.44844 0.762901
\(35\) 0 0
\(36\) −2.76869 −0.461449
\(37\) −5.18286 −0.852057 −0.426028 0.904710i \(-0.640088\pi\)
−0.426028 + 0.904710i \(0.640088\pi\)
\(38\) −9.12229 −1.47983
\(39\) −12.5165 −2.00425
\(40\) 0 0
\(41\) 4.90259 0.765656 0.382828 0.923820i \(-0.374950\pi\)
0.382828 + 0.923820i \(0.374950\pi\)
\(42\) 0.962037 0.148446
\(43\) −3.12584 −0.476686 −0.238343 0.971181i \(-0.576604\pi\)
−0.238343 + 0.971181i \(0.576604\pi\)
\(44\) 0.217925 0.0328535
\(45\) 0 0
\(46\) 6.18714 0.912243
\(47\) −6.99306 −1.02004 −0.510021 0.860162i \(-0.670363\pi\)
−0.510021 + 0.860162i \(0.670363\pi\)
\(48\) 9.97138 1.43924
\(49\) −6.94479 −0.992112
\(50\) 0 0
\(51\) 11.2259 1.57195
\(52\) −1.47045 −0.203914
\(53\) 12.1609 1.67042 0.835212 0.549929i \(-0.185345\pi\)
0.835212 + 0.549929i \(0.185345\pi\)
\(54\) 17.7357 2.41353
\(55\) 0 0
\(56\) 0.711612 0.0950932
\(57\) −23.0207 −3.04917
\(58\) −10.7564 −1.41239
\(59\) −14.3710 −1.87095 −0.935475 0.353393i \(-0.885028\pi\)
−0.935475 + 0.353393i \(0.885028\pi\)
\(60\) 0 0
\(61\) −7.71724 −0.988092 −0.494046 0.869436i \(-0.664482\pi\)
−0.494046 + 0.869436i \(0.664482\pi\)
\(62\) 7.10173 0.901920
\(63\) 1.72283 0.217057
\(64\) 8.88625 1.11078
\(65\) 0 0
\(66\) −2.36276 −0.290835
\(67\) −2.57664 −0.314787 −0.157393 0.987536i \(-0.550309\pi\)
−0.157393 + 0.987536i \(0.550309\pi\)
\(68\) 1.31883 0.159931
\(69\) 15.6136 1.87966
\(70\) 0 0
\(71\) 7.82253 0.928363 0.464182 0.885740i \(-0.346348\pi\)
0.464182 + 0.885740i \(0.346348\pi\)
\(72\) 22.2043 2.61680
\(73\) −8.14734 −0.953574 −0.476787 0.879019i \(-0.658199\pi\)
−0.476787 + 0.879019i \(0.658199\pi\)
\(74\) 6.60155 0.767414
\(75\) 0 0
\(76\) −2.70448 −0.310225
\(77\) −0.135605 −0.0154537
\(78\) 15.9426 1.80515
\(79\) −0.388882 −0.0437526 −0.0218763 0.999761i \(-0.506964\pi\)
−0.0218763 + 0.999761i \(0.506964\pi\)
\(80\) 0 0
\(81\) 22.7615 2.52906
\(82\) −6.24456 −0.689597
\(83\) 5.26069 0.577436 0.288718 0.957414i \(-0.406771\pi\)
0.288718 + 0.957414i \(0.406771\pi\)
\(84\) 0.285214 0.0311195
\(85\) 0 0
\(86\) 3.98147 0.429333
\(87\) −27.1445 −2.91020
\(88\) −1.74771 −0.186307
\(89\) 8.36693 0.886893 0.443446 0.896301i \(-0.353756\pi\)
0.443446 + 0.896301i \(0.353756\pi\)
\(90\) 0 0
\(91\) 0.914993 0.0959173
\(92\) 1.83430 0.191239
\(93\) 17.9217 1.85839
\(94\) 8.90725 0.918712
\(95\) 0 0
\(96\) 6.76801 0.690757
\(97\) 8.83287 0.896842 0.448421 0.893822i \(-0.351987\pi\)
0.448421 + 0.893822i \(0.351987\pi\)
\(98\) 8.84576 0.893556
\(99\) −4.23127 −0.425258
\(100\) 0 0
\(101\) 1.70238 0.169393 0.0846967 0.996407i \(-0.473008\pi\)
0.0846967 + 0.996407i \(0.473008\pi\)
\(102\) −14.2988 −1.41579
\(103\) −2.80970 −0.276848 −0.138424 0.990373i \(-0.544204\pi\)
−0.138424 + 0.990373i \(0.544204\pi\)
\(104\) 11.7927 1.15637
\(105\) 0 0
\(106\) −15.4896 −1.50448
\(107\) −6.50076 −0.628452 −0.314226 0.949348i \(-0.601745\pi\)
−0.314226 + 0.949348i \(0.601745\pi\)
\(108\) 5.25810 0.505961
\(109\) 11.9904 1.14847 0.574236 0.818690i \(-0.305299\pi\)
0.574236 + 0.818690i \(0.305299\pi\)
\(110\) 0 0
\(111\) 16.6594 1.58124
\(112\) −0.728935 −0.0688779
\(113\) −9.74277 −0.916522 −0.458261 0.888818i \(-0.651528\pi\)
−0.458261 + 0.888818i \(0.651528\pi\)
\(114\) 29.3221 2.74626
\(115\) 0 0
\(116\) −3.18895 −0.296086
\(117\) 28.5504 2.63948
\(118\) 18.3048 1.68509
\(119\) −0.820647 −0.0752286
\(120\) 0 0
\(121\) −10.6670 −0.969723
\(122\) 9.82965 0.889935
\(123\) −15.7586 −1.42090
\(124\) 2.10544 0.189075
\(125\) 0 0
\(126\) −2.19442 −0.195494
\(127\) 10.3084 0.914723 0.457361 0.889281i \(-0.348795\pi\)
0.457361 + 0.889281i \(0.348795\pi\)
\(128\) −7.10750 −0.628220
\(129\) 10.0475 0.884633
\(130\) 0 0
\(131\) 19.5189 1.70537 0.852686 0.522423i \(-0.174972\pi\)
0.852686 + 0.522423i \(0.174972\pi\)
\(132\) −0.700485 −0.0609694
\(133\) 1.68288 0.145924
\(134\) 3.28193 0.283516
\(135\) 0 0
\(136\) −10.5767 −0.906945
\(137\) 3.03314 0.259139 0.129569 0.991570i \(-0.458641\pi\)
0.129569 + 0.991570i \(0.458641\pi\)
\(138\) −19.8875 −1.69294
\(139\) 2.29531 0.194686 0.0973428 0.995251i \(-0.468966\pi\)
0.0973428 + 0.995251i \(0.468966\pi\)
\(140\) 0 0
\(141\) 22.4780 1.89299
\(142\) −9.96376 −0.836140
\(143\) −2.24722 −0.187922
\(144\) −22.7448 −1.89540
\(145\) 0 0
\(146\) 10.3775 0.858847
\(147\) 22.3229 1.84116
\(148\) 1.95716 0.160877
\(149\) 12.8336 1.05137 0.525685 0.850679i \(-0.323809\pi\)
0.525685 + 0.850679i \(0.323809\pi\)
\(150\) 0 0
\(151\) −4.69271 −0.381887 −0.190944 0.981601i \(-0.561155\pi\)
−0.190944 + 0.981601i \(0.561155\pi\)
\(152\) 21.6893 1.75924
\(153\) −25.6065 −2.07016
\(154\) 0.172724 0.0139185
\(155\) 0 0
\(156\) 4.72650 0.378423
\(157\) 3.54513 0.282933 0.141466 0.989943i \(-0.454818\pi\)
0.141466 + 0.989943i \(0.454818\pi\)
\(158\) 0.495329 0.0394063
\(159\) −39.0891 −3.09997
\(160\) 0 0
\(161\) −1.14140 −0.0899550
\(162\) −28.9919 −2.27782
\(163\) 2.45347 0.192171 0.0960853 0.995373i \(-0.469368\pi\)
0.0960853 + 0.995373i \(0.469368\pi\)
\(164\) −1.85132 −0.144564
\(165\) 0 0
\(166\) −6.70068 −0.520074
\(167\) −6.34224 −0.490777 −0.245389 0.969425i \(-0.578916\pi\)
−0.245389 + 0.969425i \(0.578916\pi\)
\(168\) −2.28736 −0.176474
\(169\) 2.16303 0.166387
\(170\) 0 0
\(171\) 52.5105 4.01558
\(172\) 1.18038 0.0900034
\(173\) −7.16447 −0.544705 −0.272352 0.962198i \(-0.587802\pi\)
−0.272352 + 0.962198i \(0.587802\pi\)
\(174\) 34.5747 2.62110
\(175\) 0 0
\(176\) 1.79026 0.134946
\(177\) 46.1933 3.47210
\(178\) −10.6572 −0.798790
\(179\) −7.39749 −0.552914 −0.276457 0.961026i \(-0.589160\pi\)
−0.276457 + 0.961026i \(0.589160\pi\)
\(180\) 0 0
\(181\) −20.1924 −1.50089 −0.750445 0.660933i \(-0.770161\pi\)
−0.750445 + 0.660933i \(0.770161\pi\)
\(182\) −1.16545 −0.0863889
\(183\) 24.8058 1.83370
\(184\) −14.7107 −1.08448
\(185\) 0 0
\(186\) −22.8273 −1.67378
\(187\) 2.01550 0.147388
\(188\) 2.64073 0.192595
\(189\) −3.27188 −0.237994
\(190\) 0 0
\(191\) −20.5634 −1.48791 −0.743957 0.668227i \(-0.767053\pi\)
−0.743957 + 0.668227i \(0.767053\pi\)
\(192\) −28.5634 −2.06138
\(193\) −2.68844 −0.193518 −0.0967591 0.995308i \(-0.530848\pi\)
−0.0967591 + 0.995308i \(0.530848\pi\)
\(194\) −11.2507 −0.807750
\(195\) 0 0
\(196\) 2.62250 0.187321
\(197\) 1.00000 0.0712470
\(198\) 5.38948 0.383014
\(199\) −5.33760 −0.378373 −0.189186 0.981941i \(-0.560585\pi\)
−0.189186 + 0.981941i \(0.560585\pi\)
\(200\) 0 0
\(201\) 8.28218 0.584180
\(202\) −2.16837 −0.152566
\(203\) 1.98434 0.139273
\(204\) −4.23915 −0.296800
\(205\) 0 0
\(206\) 3.57878 0.249346
\(207\) −35.6149 −2.47541
\(208\) −12.0797 −0.837579
\(209\) −4.13313 −0.285895
\(210\) 0 0
\(211\) −27.4653 −1.89079 −0.945395 0.325927i \(-0.894324\pi\)
−0.945395 + 0.325927i \(0.894324\pi\)
\(212\) −4.59220 −0.315393
\(213\) −25.1442 −1.72285
\(214\) 8.28019 0.566022
\(215\) 0 0
\(216\) −42.1689 −2.86923
\(217\) −1.31012 −0.0889370
\(218\) −15.2725 −1.03438
\(219\) 26.1883 1.76964
\(220\) 0 0
\(221\) −13.5996 −0.914805
\(222\) −21.2196 −1.42416
\(223\) 24.1738 1.61880 0.809399 0.587260i \(-0.199793\pi\)
0.809399 + 0.587260i \(0.199793\pi\)
\(224\) −0.494760 −0.0330576
\(225\) 0 0
\(226\) 12.4096 0.825476
\(227\) 17.8340 1.18368 0.591842 0.806054i \(-0.298401\pi\)
0.591842 + 0.806054i \(0.298401\pi\)
\(228\) 8.69309 0.575714
\(229\) −26.4544 −1.74816 −0.874079 0.485784i \(-0.838534\pi\)
−0.874079 + 0.485784i \(0.838534\pi\)
\(230\) 0 0
\(231\) 0.435880 0.0286788
\(232\) 25.5747 1.67906
\(233\) 30.1629 1.97604 0.988019 0.154335i \(-0.0493235\pi\)
0.988019 + 0.154335i \(0.0493235\pi\)
\(234\) −36.3654 −2.37728
\(235\) 0 0
\(236\) 5.42680 0.353255
\(237\) 1.25000 0.0811959
\(238\) 1.04528 0.0677554
\(239\) 4.58904 0.296840 0.148420 0.988924i \(-0.452581\pi\)
0.148420 + 0.988924i \(0.452581\pi\)
\(240\) 0 0
\(241\) 23.5615 1.51773 0.758864 0.651249i \(-0.225755\pi\)
0.758864 + 0.651249i \(0.225755\pi\)
\(242\) 13.5868 0.873391
\(243\) −31.3902 −2.01368
\(244\) 2.91419 0.186562
\(245\) 0 0
\(246\) 20.0721 1.27975
\(247\) 27.8882 1.77448
\(248\) −16.8852 −1.07221
\(249\) −16.9096 −1.07160
\(250\) 0 0
\(251\) 12.0057 0.757794 0.378897 0.925439i \(-0.376304\pi\)
0.378897 + 0.925439i \(0.376304\pi\)
\(252\) −0.650578 −0.0409826
\(253\) 2.80327 0.176240
\(254\) −13.1301 −0.823855
\(255\) 0 0
\(256\) −8.71948 −0.544967
\(257\) −14.1205 −0.880812 −0.440406 0.897799i \(-0.645165\pi\)
−0.440406 + 0.897799i \(0.645165\pi\)
\(258\) −12.7978 −0.796754
\(259\) −1.21785 −0.0756736
\(260\) 0 0
\(261\) 61.9170 3.83257
\(262\) −24.8617 −1.53596
\(263\) 10.3347 0.637268 0.318634 0.947878i \(-0.396776\pi\)
0.318634 + 0.947878i \(0.396776\pi\)
\(264\) 5.61774 0.345748
\(265\) 0 0
\(266\) −2.14352 −0.131428
\(267\) −26.8941 −1.64589
\(268\) 0.972993 0.0594350
\(269\) −15.0254 −0.916112 −0.458056 0.888923i \(-0.651454\pi\)
−0.458056 + 0.888923i \(0.651454\pi\)
\(270\) 0 0
\(271\) −3.06893 −0.186424 −0.0932120 0.995646i \(-0.529713\pi\)
−0.0932120 + 0.995646i \(0.529713\pi\)
\(272\) 10.8342 0.656919
\(273\) −2.94109 −0.178003
\(274\) −3.86339 −0.233396
\(275\) 0 0
\(276\) −5.89604 −0.354900
\(277\) −32.3023 −1.94086 −0.970429 0.241385i \(-0.922398\pi\)
−0.970429 + 0.241385i \(0.922398\pi\)
\(278\) −2.92360 −0.175346
\(279\) −40.8796 −2.44740
\(280\) 0 0
\(281\) −29.3552 −1.75118 −0.875592 0.483052i \(-0.839528\pi\)
−0.875592 + 0.483052i \(0.839528\pi\)
\(282\) −28.6309 −1.70494
\(283\) −15.3472 −0.912298 −0.456149 0.889903i \(-0.650772\pi\)
−0.456149 + 0.889903i \(0.650772\pi\)
\(284\) −2.95395 −0.175285
\(285\) 0 0
\(286\) 2.86234 0.169254
\(287\) 1.15200 0.0680001
\(288\) −15.4379 −0.909689
\(289\) −4.80271 −0.282512
\(290\) 0 0
\(291\) −28.3918 −1.66436
\(292\) 3.07661 0.180045
\(293\) 25.7169 1.50240 0.751199 0.660075i \(-0.229476\pi\)
0.751199 + 0.660075i \(0.229476\pi\)
\(294\) −28.4332 −1.65826
\(295\) 0 0
\(296\) −15.6960 −0.912310
\(297\) 8.03572 0.466280
\(298\) −16.3465 −0.946928
\(299\) −18.9150 −1.09388
\(300\) 0 0
\(301\) −0.734500 −0.0423359
\(302\) 5.97723 0.343951
\(303\) −5.47202 −0.314360
\(304\) −22.2173 −1.27425
\(305\) 0 0
\(306\) 32.6157 1.86452
\(307\) 2.60692 0.148785 0.0743924 0.997229i \(-0.476298\pi\)
0.0743924 + 0.997229i \(0.476298\pi\)
\(308\) 0.0512074 0.00291781
\(309\) 9.03130 0.513773
\(310\) 0 0
\(311\) −19.8431 −1.12520 −0.562599 0.826730i \(-0.690199\pi\)
−0.562599 + 0.826730i \(0.690199\pi\)
\(312\) −37.9055 −2.14598
\(313\) −18.1393 −1.02529 −0.512647 0.858599i \(-0.671335\pi\)
−0.512647 + 0.858599i \(0.671335\pi\)
\(314\) −4.51553 −0.254826
\(315\) 0 0
\(316\) 0.146850 0.00826095
\(317\) 5.29542 0.297420 0.148710 0.988881i \(-0.452488\pi\)
0.148710 + 0.988881i \(0.452488\pi\)
\(318\) 49.7888 2.79202
\(319\) −4.87352 −0.272865
\(320\) 0 0
\(321\) 20.8956 1.16628
\(322\) 1.45383 0.0810189
\(323\) −25.0126 −1.39174
\(324\) −8.59522 −0.477512
\(325\) 0 0
\(326\) −3.12505 −0.173081
\(327\) −38.5412 −2.13133
\(328\) 14.8472 0.819800
\(329\) −1.64321 −0.0905929
\(330\) 0 0
\(331\) 29.2462 1.60752 0.803760 0.594954i \(-0.202830\pi\)
0.803760 + 0.594954i \(0.202830\pi\)
\(332\) −1.98655 −0.109026
\(333\) −38.0004 −2.08241
\(334\) 8.07828 0.442024
\(335\) 0 0
\(336\) 2.34304 0.127823
\(337\) 23.6870 1.29031 0.645156 0.764051i \(-0.276793\pi\)
0.645156 + 0.764051i \(0.276793\pi\)
\(338\) −2.75511 −0.149858
\(339\) 31.3165 1.70088
\(340\) 0 0
\(341\) 3.21766 0.174246
\(342\) −66.8840 −3.61667
\(343\) −3.27670 −0.176925
\(344\) −9.46642 −0.510395
\(345\) 0 0
\(346\) 9.12558 0.490594
\(347\) −7.92141 −0.425244 −0.212622 0.977135i \(-0.568200\pi\)
−0.212622 + 0.977135i \(0.568200\pi\)
\(348\) 10.2503 0.549475
\(349\) −25.6673 −1.37394 −0.686969 0.726687i \(-0.741059\pi\)
−0.686969 + 0.726687i \(0.741059\pi\)
\(350\) 0 0
\(351\) −54.2208 −2.89409
\(352\) 1.21513 0.0647665
\(353\) −13.2644 −0.705995 −0.352997 0.935624i \(-0.614838\pi\)
−0.352997 + 0.935624i \(0.614838\pi\)
\(354\) −58.8376 −3.12718
\(355\) 0 0
\(356\) −3.15953 −0.167455
\(357\) 2.63783 0.139609
\(358\) 9.42238 0.497988
\(359\) −5.67509 −0.299520 −0.149760 0.988722i \(-0.547850\pi\)
−0.149760 + 0.988722i \(0.547850\pi\)
\(360\) 0 0
\(361\) 32.2926 1.69961
\(362\) 25.7196 1.35179
\(363\) 34.2871 1.79961
\(364\) −0.345520 −0.0181102
\(365\) 0 0
\(366\) −31.5958 −1.65154
\(367\) −18.8576 −0.984361 −0.492180 0.870493i \(-0.663800\pi\)
−0.492180 + 0.870493i \(0.663800\pi\)
\(368\) 15.0688 0.785514
\(369\) 35.9455 1.87125
\(370\) 0 0
\(371\) 2.85752 0.148355
\(372\) −6.76760 −0.350884
\(373\) 22.6052 1.17045 0.585226 0.810870i \(-0.301006\pi\)
0.585226 + 0.810870i \(0.301006\pi\)
\(374\) −2.56720 −0.132747
\(375\) 0 0
\(376\) −21.1781 −1.09217
\(377\) 32.8840 1.69361
\(378\) 4.16748 0.214352
\(379\) −13.2151 −0.678815 −0.339408 0.940639i \(-0.610227\pi\)
−0.339408 + 0.940639i \(0.610227\pi\)
\(380\) 0 0
\(381\) −33.1346 −1.69754
\(382\) 26.1921 1.34011
\(383\) −9.06658 −0.463281 −0.231640 0.972801i \(-0.574409\pi\)
−0.231640 + 0.972801i \(0.574409\pi\)
\(384\) 22.8459 1.16585
\(385\) 0 0
\(386\) 3.42434 0.174294
\(387\) −22.9185 −1.16501
\(388\) −3.33548 −0.169333
\(389\) 24.1714 1.22554 0.612768 0.790263i \(-0.290056\pi\)
0.612768 + 0.790263i \(0.290056\pi\)
\(390\) 0 0
\(391\) 16.9647 0.857940
\(392\) −21.0319 −1.06227
\(393\) −62.7402 −3.16482
\(394\) −1.27373 −0.0641694
\(395\) 0 0
\(396\) 1.59782 0.0802932
\(397\) −10.7768 −0.540870 −0.270435 0.962738i \(-0.587167\pi\)
−0.270435 + 0.962738i \(0.587167\pi\)
\(398\) 6.79865 0.340785
\(399\) −5.40933 −0.270805
\(400\) 0 0
\(401\) 0.512588 0.0255974 0.0127987 0.999918i \(-0.495926\pi\)
0.0127987 + 0.999918i \(0.495926\pi\)
\(402\) −10.5492 −0.526148
\(403\) −21.7111 −1.08150
\(404\) −0.642855 −0.0319832
\(405\) 0 0
\(406\) −2.52750 −0.125438
\(407\) 2.99103 0.148260
\(408\) 33.9971 1.68311
\(409\) 29.1701 1.44237 0.721183 0.692744i \(-0.243598\pi\)
0.721183 + 0.692744i \(0.243598\pi\)
\(410\) 0 0
\(411\) −9.74953 −0.480909
\(412\) 1.06100 0.0522717
\(413\) −3.37686 −0.166164
\(414\) 45.3637 2.22950
\(415\) 0 0
\(416\) −8.19905 −0.401991
\(417\) −7.37789 −0.361297
\(418\) 5.26448 0.257494
\(419\) −7.18784 −0.351149 −0.175574 0.984466i \(-0.556178\pi\)
−0.175574 + 0.984466i \(0.556178\pi\)
\(420\) 0 0
\(421\) 16.3859 0.798598 0.399299 0.916821i \(-0.369254\pi\)
0.399299 + 0.916821i \(0.369254\pi\)
\(422\) 34.9833 1.70296
\(423\) −51.2727 −2.49296
\(424\) 36.8284 1.78855
\(425\) 0 0
\(426\) 32.0268 1.55171
\(427\) −1.81337 −0.0877552
\(428\) 2.45482 0.118658
\(429\) 7.22330 0.348744
\(430\) 0 0
\(431\) −24.6531 −1.18750 −0.593750 0.804650i \(-0.702353\pi\)
−0.593750 + 0.804650i \(0.702353\pi\)
\(432\) 43.1954 2.07824
\(433\) 16.5810 0.796831 0.398415 0.917205i \(-0.369560\pi\)
0.398415 + 0.917205i \(0.369560\pi\)
\(434\) 1.66874 0.0801021
\(435\) 0 0
\(436\) −4.52783 −0.216844
\(437\) −34.7889 −1.66418
\(438\) −33.3567 −1.59384
\(439\) 14.3127 0.683110 0.341555 0.939862i \(-0.389046\pi\)
0.341555 + 0.939862i \(0.389046\pi\)
\(440\) 0 0
\(441\) −50.9187 −2.42470
\(442\) 17.3221 0.823929
\(443\) −1.91828 −0.0911403 −0.0455702 0.998961i \(-0.514510\pi\)
−0.0455702 + 0.998961i \(0.514510\pi\)
\(444\) −6.29095 −0.298555
\(445\) 0 0
\(446\) −30.7908 −1.45799
\(447\) −41.2515 −1.95113
\(448\) 2.08806 0.0986516
\(449\) 21.6287 1.02072 0.510360 0.859961i \(-0.329512\pi\)
0.510360 + 0.859961i \(0.329512\pi\)
\(450\) 0 0
\(451\) −2.82929 −0.133226
\(452\) 3.67907 0.173049
\(453\) 15.0839 0.708705
\(454\) −22.7157 −1.06610
\(455\) 0 0
\(456\) −69.7168 −3.26479
\(457\) −19.6638 −0.919835 −0.459917 0.887962i \(-0.652121\pi\)
−0.459917 + 0.887962i \(0.652121\pi\)
\(458\) 33.6957 1.57450
\(459\) 48.6301 2.26986
\(460\) 0 0
\(461\) 10.3420 0.481676 0.240838 0.970565i \(-0.422578\pi\)
0.240838 + 0.970565i \(0.422578\pi\)
\(462\) −0.555192 −0.0258299
\(463\) 10.9518 0.508973 0.254486 0.967076i \(-0.418094\pi\)
0.254486 + 0.967076i \(0.418094\pi\)
\(464\) −26.1972 −1.21618
\(465\) 0 0
\(466\) −38.4193 −1.77974
\(467\) −20.9307 −0.968556 −0.484278 0.874914i \(-0.660918\pi\)
−0.484278 + 0.874914i \(0.660918\pi\)
\(468\) −10.7812 −0.498362
\(469\) −0.605450 −0.0279571
\(470\) 0 0
\(471\) −11.3952 −0.525065
\(472\) −43.5218 −2.00325
\(473\) 1.80393 0.0829446
\(474\) −1.59215 −0.0731300
\(475\) 0 0
\(476\) 0.309893 0.0142039
\(477\) 89.1627 4.08248
\(478\) −5.84518 −0.267352
\(479\) −20.8556 −0.952916 −0.476458 0.879197i \(-0.658080\pi\)
−0.476458 + 0.879197i \(0.658080\pi\)
\(480\) 0 0
\(481\) −20.1819 −0.920216
\(482\) −30.0109 −1.36696
\(483\) 3.66884 0.166938
\(484\) 4.02806 0.183094
\(485\) 0 0
\(486\) 39.9825 1.81364
\(487\) 27.2853 1.23642 0.618208 0.786015i \(-0.287859\pi\)
0.618208 + 0.786015i \(0.287859\pi\)
\(488\) −23.3712 −1.05796
\(489\) −7.88627 −0.356630
\(490\) 0 0
\(491\) 15.6305 0.705395 0.352697 0.935737i \(-0.385265\pi\)
0.352697 + 0.935737i \(0.385265\pi\)
\(492\) 5.95076 0.268281
\(493\) −29.4933 −1.32831
\(494\) −35.5219 −1.59821
\(495\) 0 0
\(496\) 17.2963 0.776625
\(497\) 1.83811 0.0824506
\(498\) 21.5382 0.965150
\(499\) −22.7946 −1.02042 −0.510212 0.860048i \(-0.670433\pi\)
−0.510212 + 0.860048i \(0.670433\pi\)
\(500\) 0 0
\(501\) 20.3861 0.910783
\(502\) −15.2920 −0.682515
\(503\) 21.7516 0.969858 0.484929 0.874554i \(-0.338845\pi\)
0.484929 + 0.874554i \(0.338845\pi\)
\(504\) 5.21750 0.232406
\(505\) 0 0
\(506\) −3.57060 −0.158733
\(507\) −6.95270 −0.308780
\(508\) −3.89267 −0.172709
\(509\) −36.9506 −1.63781 −0.818904 0.573930i \(-0.805418\pi\)
−0.818904 + 0.573930i \(0.805418\pi\)
\(510\) 0 0
\(511\) −1.91444 −0.0846896
\(512\) 25.3212 1.11905
\(513\) −99.7242 −4.40293
\(514\) 17.9856 0.793312
\(515\) 0 0
\(516\) −3.79414 −0.167028
\(517\) 4.03570 0.177490
\(518\) 1.55121 0.0681562
\(519\) 23.0290 1.01086
\(520\) 0 0
\(521\) 0.0246447 0.00107970 0.000539852 1.00000i \(-0.499828\pi\)
0.000539852 1.00000i \(0.499828\pi\)
\(522\) −78.8653 −3.45184
\(523\) 21.2265 0.928168 0.464084 0.885791i \(-0.346384\pi\)
0.464084 + 0.885791i \(0.346384\pi\)
\(524\) −7.37074 −0.321992
\(525\) 0 0
\(526\) −13.1636 −0.573962
\(527\) 19.4724 0.848231
\(528\) −5.75449 −0.250432
\(529\) 0.595377 0.0258860
\(530\) 0 0
\(531\) −105.368 −4.57256
\(532\) −0.635489 −0.0275520
\(533\) 19.0906 0.826904
\(534\) 34.2557 1.48239
\(535\) 0 0
\(536\) −7.80319 −0.337047
\(537\) 23.7780 1.02610
\(538\) 19.1382 0.825106
\(539\) 4.00784 0.172630
\(540\) 0 0
\(541\) −25.2530 −1.08571 −0.542855 0.839827i \(-0.682657\pi\)
−0.542855 + 0.839827i \(0.682657\pi\)
\(542\) 3.90897 0.167905
\(543\) 64.9051 2.78535
\(544\) 7.35363 0.315284
\(545\) 0 0
\(546\) 3.74615 0.160320
\(547\) 12.9296 0.552830 0.276415 0.961038i \(-0.410854\pi\)
0.276415 + 0.961038i \(0.410854\pi\)
\(548\) −1.14538 −0.0489281
\(549\) −56.5823 −2.41488
\(550\) 0 0
\(551\) 60.4809 2.57657
\(552\) 47.2850 2.01258
\(553\) −0.0913781 −0.00388579
\(554\) 41.1443 1.74806
\(555\) 0 0
\(556\) −0.866757 −0.0367587
\(557\) 9.53791 0.404134 0.202067 0.979372i \(-0.435234\pi\)
0.202067 + 0.979372i \(0.435234\pi\)
\(558\) 52.0694 2.20427
\(559\) −12.1719 −0.514818
\(560\) 0 0
\(561\) −6.47850 −0.273522
\(562\) 37.3905 1.57722
\(563\) −16.4517 −0.693356 −0.346678 0.937984i \(-0.612690\pi\)
−0.346678 + 0.937984i \(0.612690\pi\)
\(564\) −8.48817 −0.357417
\(565\) 0 0
\(566\) 19.5482 0.821671
\(567\) 5.34842 0.224613
\(568\) 23.6900 0.994012
\(569\) 33.1531 1.38985 0.694926 0.719082i \(-0.255437\pi\)
0.694926 + 0.719082i \(0.255437\pi\)
\(570\) 0 0
\(571\) −21.2096 −0.887595 −0.443798 0.896127i \(-0.646369\pi\)
−0.443798 + 0.896127i \(0.646369\pi\)
\(572\) 0.848596 0.0354816
\(573\) 66.0976 2.76127
\(574\) −1.46733 −0.0612450
\(575\) 0 0
\(576\) 65.1534 2.71472
\(577\) −3.39956 −0.141526 −0.0707628 0.997493i \(-0.522543\pi\)
−0.0707628 + 0.997493i \(0.522543\pi\)
\(578\) 6.11733 0.254448
\(579\) 8.64155 0.359130
\(580\) 0 0
\(581\) 1.23614 0.0512837
\(582\) 36.1634 1.49902
\(583\) −7.01805 −0.290658
\(584\) −24.6737 −1.02101
\(585\) 0 0
\(586\) −32.7563 −1.35315
\(587\) −37.5978 −1.55183 −0.775914 0.630839i \(-0.782711\pi\)
−0.775914 + 0.630839i \(0.782711\pi\)
\(588\) −8.42958 −0.347630
\(589\) −39.9315 −1.64535
\(590\) 0 0
\(591\) −3.21433 −0.132220
\(592\) 16.0781 0.660804
\(593\) 17.6880 0.726360 0.363180 0.931719i \(-0.381691\pi\)
0.363180 + 0.931719i \(0.381691\pi\)
\(594\) −10.2353 −0.419960
\(595\) 0 0
\(596\) −4.84624 −0.198510
\(597\) 17.1568 0.702183
\(598\) 24.0925 0.985217
\(599\) 2.70489 0.110519 0.0552595 0.998472i \(-0.482401\pi\)
0.0552595 + 0.998472i \(0.482401\pi\)
\(600\) 0 0
\(601\) −26.9989 −1.10131 −0.550654 0.834733i \(-0.685622\pi\)
−0.550654 + 0.834733i \(0.685622\pi\)
\(602\) 0.935552 0.0381302
\(603\) −18.8918 −0.769332
\(604\) 1.77206 0.0721043
\(605\) 0 0
\(606\) 6.96986 0.283131
\(607\) −6.45409 −0.261964 −0.130982 0.991385i \(-0.541813\pi\)
−0.130982 + 0.991385i \(0.541813\pi\)
\(608\) −15.0799 −0.611570
\(609\) −6.37833 −0.258463
\(610\) 0 0
\(611\) −27.2308 −1.10164
\(612\) 9.66956 0.390869
\(613\) 9.63640 0.389211 0.194605 0.980882i \(-0.437657\pi\)
0.194605 + 0.980882i \(0.437657\pi\)
\(614\) −3.32050 −0.134005
\(615\) 0 0
\(616\) −0.410672 −0.0165465
\(617\) 8.69198 0.349926 0.174963 0.984575i \(-0.444019\pi\)
0.174963 + 0.984575i \(0.444019\pi\)
\(618\) −11.5034 −0.462735
\(619\) −22.1646 −0.890870 −0.445435 0.895314i \(-0.646951\pi\)
−0.445435 + 0.895314i \(0.646951\pi\)
\(620\) 0 0
\(621\) 67.6373 2.71419
\(622\) 25.2747 1.01342
\(623\) 1.96603 0.0787675
\(624\) 38.8283 1.55438
\(625\) 0 0
\(626\) 23.1045 0.923443
\(627\) 13.2853 0.530562
\(628\) −1.33872 −0.0534206
\(629\) 18.1009 0.721732
\(630\) 0 0
\(631\) −2.65768 −0.105800 −0.0529002 0.998600i \(-0.516847\pi\)
−0.0529002 + 0.998600i \(0.516847\pi\)
\(632\) −1.17770 −0.0468466
\(633\) 88.2827 3.50892
\(634\) −6.74492 −0.267875
\(635\) 0 0
\(636\) 14.7608 0.585306
\(637\) −27.0428 −1.07148
\(638\) 6.20753 0.245759
\(639\) 57.3543 2.26890
\(640\) 0 0
\(641\) 27.4000 1.08224 0.541118 0.840946i \(-0.318001\pi\)
0.541118 + 0.840946i \(0.318001\pi\)
\(642\) −26.6153 −1.05042
\(643\) −26.5633 −1.04755 −0.523777 0.851856i \(-0.675477\pi\)
−0.523777 + 0.851856i \(0.675477\pi\)
\(644\) 0.431017 0.0169844
\(645\) 0 0
\(646\) 31.8592 1.25349
\(647\) −25.6395 −1.00799 −0.503996 0.863706i \(-0.668137\pi\)
−0.503996 + 0.863706i \(0.668137\pi\)
\(648\) 68.9318 2.70790
\(649\) 8.29354 0.325550
\(650\) 0 0
\(651\) 4.21118 0.165049
\(652\) −0.926482 −0.0362838
\(653\) 17.4067 0.681179 0.340589 0.940212i \(-0.389373\pi\)
0.340589 + 0.940212i \(0.389373\pi\)
\(654\) 49.0909 1.91961
\(655\) 0 0
\(656\) −15.2086 −0.593797
\(657\) −59.7358 −2.33052
\(658\) 2.09299 0.0815934
\(659\) 18.2733 0.711827 0.355913 0.934519i \(-0.384170\pi\)
0.355913 + 0.934519i \(0.384170\pi\)
\(660\) 0 0
\(661\) 13.4912 0.524748 0.262374 0.964966i \(-0.415495\pi\)
0.262374 + 0.964966i \(0.415495\pi\)
\(662\) −37.2517 −1.44783
\(663\) 43.7135 1.69769
\(664\) 15.9317 0.618269
\(665\) 0 0
\(666\) 48.4021 1.87554
\(667\) −41.0208 −1.58833
\(668\) 2.39496 0.0926639
\(669\) −77.7026 −3.00416
\(670\) 0 0
\(671\) 4.45363 0.171930
\(672\) 1.59033 0.0613481
\(673\) −24.5543 −0.946497 −0.473249 0.880929i \(-0.656919\pi\)
−0.473249 + 0.880929i \(0.656919\pi\)
\(674\) −30.1707 −1.16213
\(675\) 0 0
\(676\) −0.816805 −0.0314156
\(677\) 21.6592 0.832429 0.416215 0.909266i \(-0.363356\pi\)
0.416215 + 0.909266i \(0.363356\pi\)
\(678\) −39.8887 −1.53191
\(679\) 2.07552 0.0796511
\(680\) 0 0
\(681\) −57.3245 −2.19668
\(682\) −4.09841 −0.156936
\(683\) 21.0697 0.806209 0.403105 0.915154i \(-0.367931\pi\)
0.403105 + 0.915154i \(0.367931\pi\)
\(684\) −19.8291 −0.758183
\(685\) 0 0
\(686\) 4.17362 0.159349
\(687\) 85.0334 3.24423
\(688\) 9.69686 0.369689
\(689\) 47.3541 1.80405
\(690\) 0 0
\(691\) 22.7420 0.865146 0.432573 0.901599i \(-0.357606\pi\)
0.432573 + 0.901599i \(0.357606\pi\)
\(692\) 2.70545 0.102846
\(693\) −0.994249 −0.0377684
\(694\) 10.0897 0.383000
\(695\) 0 0
\(696\) −82.2055 −3.11599
\(697\) −17.1221 −0.648547
\(698\) 32.6931 1.23745
\(699\) −96.9536 −3.66712
\(700\) 0 0
\(701\) −35.8276 −1.35319 −0.676596 0.736355i \(-0.736545\pi\)
−0.676596 + 0.736355i \(0.736545\pi\)
\(702\) 69.0625 2.60660
\(703\) −37.1191 −1.39997
\(704\) −5.12826 −0.193279
\(705\) 0 0
\(706\) 16.8953 0.635862
\(707\) 0.400020 0.0150443
\(708\) −17.4436 −0.655569
\(709\) −18.4033 −0.691152 −0.345576 0.938391i \(-0.612316\pi\)
−0.345576 + 0.938391i \(0.612316\pi\)
\(710\) 0 0
\(711\) −2.85126 −0.106930
\(712\) 25.3387 0.949609
\(713\) 27.0833 1.01428
\(714\) −3.35988 −0.125740
\(715\) 0 0
\(716\) 2.79345 0.104396
\(717\) −14.7507 −0.550875
\(718\) 7.22852 0.269766
\(719\) 22.9617 0.856326 0.428163 0.903702i \(-0.359161\pi\)
0.428163 + 0.903702i \(0.359161\pi\)
\(720\) 0 0
\(721\) −0.660213 −0.0245876
\(722\) −41.1320 −1.53077
\(723\) −75.7345 −2.81659
\(724\) 7.62507 0.283384
\(725\) 0 0
\(726\) −43.6724 −1.62084
\(727\) 19.2162 0.712691 0.356345 0.934354i \(-0.384023\pi\)
0.356345 + 0.934354i \(0.384023\pi\)
\(728\) 2.77100 0.102700
\(729\) 32.6140 1.20792
\(730\) 0 0
\(731\) 10.9169 0.403776
\(732\) −9.36718 −0.346221
\(733\) 0.407800 0.0150624 0.00753122 0.999972i \(-0.497603\pi\)
0.00753122 + 0.999972i \(0.497603\pi\)
\(734\) 24.0195 0.886575
\(735\) 0 0
\(736\) 10.2278 0.377003
\(737\) 1.48698 0.0547736
\(738\) −45.7847 −1.68536
\(739\) −23.3824 −0.860135 −0.430068 0.902797i \(-0.641510\pi\)
−0.430068 + 0.902797i \(0.641510\pi\)
\(740\) 0 0
\(741\) −89.6420 −3.29308
\(742\) −3.63970 −0.133618
\(743\) −49.3094 −1.80899 −0.904493 0.426488i \(-0.859751\pi\)
−0.904493 + 0.426488i \(0.859751\pi\)
\(744\) 54.2747 1.98981
\(745\) 0 0
\(746\) −28.7928 −1.05418
\(747\) 38.5710 1.41124
\(748\) −0.761096 −0.0278284
\(749\) −1.52753 −0.0558146
\(750\) 0 0
\(751\) 0.947118 0.0345608 0.0172804 0.999851i \(-0.494499\pi\)
0.0172804 + 0.999851i \(0.494499\pi\)
\(752\) 21.6936 0.791084
\(753\) −38.5903 −1.40631
\(754\) −41.8852 −1.52537
\(755\) 0 0
\(756\) 1.23553 0.0449358
\(757\) −42.8580 −1.55770 −0.778850 0.627210i \(-0.784197\pi\)
−0.778850 + 0.627210i \(0.784197\pi\)
\(758\) 16.8325 0.611382
\(759\) −9.01065 −0.327066
\(760\) 0 0
\(761\) −14.6514 −0.531113 −0.265556 0.964095i \(-0.585556\pi\)
−0.265556 + 0.964095i \(0.585556\pi\)
\(762\) 42.2045 1.52891
\(763\) 2.81747 0.101999
\(764\) 7.76517 0.280934
\(765\) 0 0
\(766\) 11.5483 0.417259
\(767\) −55.9604 −2.02061
\(768\) 28.0273 1.01135
\(769\) −0.134376 −0.00484571 −0.00242285 0.999997i \(-0.500771\pi\)
−0.00242285 + 0.999997i \(0.500771\pi\)
\(770\) 0 0
\(771\) 45.3879 1.63461
\(772\) 1.01521 0.0365383
\(773\) −15.4519 −0.555767 −0.277884 0.960615i \(-0.589633\pi\)
−0.277884 + 0.960615i \(0.589633\pi\)
\(774\) 29.1919 1.04928
\(775\) 0 0
\(776\) 26.7498 0.960262
\(777\) 3.91458 0.140435
\(778\) −30.7877 −1.10379
\(779\) 35.1118 1.25801
\(780\) 0 0
\(781\) −4.51439 −0.161538
\(782\) −21.6083 −0.772713
\(783\) −117.588 −4.20226
\(784\) 21.5438 0.769423
\(785\) 0 0
\(786\) 79.9139 2.85043
\(787\) −42.6277 −1.51951 −0.759757 0.650207i \(-0.774682\pi\)
−0.759757 + 0.650207i \(0.774682\pi\)
\(788\) −0.377621 −0.0134522
\(789\) −33.2193 −1.18264
\(790\) 0 0
\(791\) −2.28932 −0.0813989
\(792\) −12.8141 −0.455330
\(793\) −30.0507 −1.06713
\(794\) 13.7266 0.487140
\(795\) 0 0
\(796\) 2.01559 0.0714407
\(797\) 11.6332 0.412069 0.206035 0.978545i \(-0.433944\pi\)
0.206035 + 0.978545i \(0.433944\pi\)
\(798\) 6.89000 0.243903
\(799\) 24.4230 0.864024
\(800\) 0 0
\(801\) 61.3458 2.16755
\(802\) −0.652897 −0.0230546
\(803\) 4.70184 0.165924
\(804\) −3.12752 −0.110299
\(805\) 0 0
\(806\) 27.6539 0.974069
\(807\) 48.2965 1.70012
\(808\) 5.15556 0.181372
\(809\) −37.3413 −1.31285 −0.656425 0.754391i \(-0.727932\pi\)
−0.656425 + 0.754391i \(0.727932\pi\)
\(810\) 0 0
\(811\) −9.00258 −0.316123 −0.158062 0.987429i \(-0.550524\pi\)
−0.158062 + 0.987429i \(0.550524\pi\)
\(812\) −0.749328 −0.0262962
\(813\) 9.86455 0.345965
\(814\) −3.80976 −0.133532
\(815\) 0 0
\(816\) −34.8247 −1.21911
\(817\) −22.3869 −0.783219
\(818\) −37.1547 −1.29908
\(819\) 6.70867 0.234420
\(820\) 0 0
\(821\) 8.55499 0.298571 0.149286 0.988794i \(-0.452303\pi\)
0.149286 + 0.988794i \(0.452303\pi\)
\(822\) 12.4182 0.433136
\(823\) 27.1990 0.948097 0.474049 0.880499i \(-0.342792\pi\)
0.474049 + 0.880499i \(0.342792\pi\)
\(824\) −8.50899 −0.296425
\(825\) 0 0
\(826\) 4.30119 0.149658
\(827\) −8.38311 −0.291509 −0.145755 0.989321i \(-0.546561\pi\)
−0.145755 + 0.989321i \(0.546561\pi\)
\(828\) 13.4489 0.467383
\(829\) 37.2591 1.29406 0.647030 0.762464i \(-0.276011\pi\)
0.647030 + 0.762464i \(0.276011\pi\)
\(830\) 0 0
\(831\) 103.830 3.60184
\(832\) 34.6028 1.19964
\(833\) 24.2544 0.840365
\(834\) 9.39741 0.325406
\(835\) 0 0
\(836\) 1.56076 0.0539799
\(837\) 77.6356 2.68348
\(838\) 9.15534 0.316266
\(839\) −12.5348 −0.432750 −0.216375 0.976310i \(-0.569423\pi\)
−0.216375 + 0.976310i \(0.569423\pi\)
\(840\) 0 0
\(841\) 42.3152 1.45914
\(842\) −20.8711 −0.719265
\(843\) 94.3573 3.24984
\(844\) 10.3715 0.357001
\(845\) 0 0
\(846\) 65.3074 2.24531
\(847\) −2.50649 −0.0861239
\(848\) −37.7250 −1.29548
\(849\) 49.3311 1.69304
\(850\) 0 0
\(851\) 25.1758 0.863015
\(852\) 9.49498 0.325293
\(853\) 20.8885 0.715210 0.357605 0.933873i \(-0.383593\pi\)
0.357605 + 0.933873i \(0.383593\pi\)
\(854\) 2.30974 0.0790377
\(855\) 0 0
\(856\) −19.6872 −0.672893
\(857\) −30.0053 −1.02496 −0.512481 0.858699i \(-0.671273\pi\)
−0.512481 + 0.858699i \(0.671273\pi\)
\(858\) −9.20051 −0.314100
\(859\) 44.8428 1.53002 0.765008 0.644020i \(-0.222735\pi\)
0.765008 + 0.644020i \(0.222735\pi\)
\(860\) 0 0
\(861\) −3.70290 −0.126194
\(862\) 31.4013 1.06953
\(863\) −10.1816 −0.346586 −0.173293 0.984870i \(-0.555441\pi\)
−0.173293 + 0.984870i \(0.555441\pi\)
\(864\) 29.3186 0.997439
\(865\) 0 0
\(866\) −21.1196 −0.717674
\(867\) 15.4375 0.524285
\(868\) 0.494730 0.0167922
\(869\) 0.224424 0.00761306
\(870\) 0 0
\(871\) −10.0334 −0.339968
\(872\) 36.3122 1.22969
\(873\) 64.7620 2.19186
\(874\) 44.3116 1.49886
\(875\) 0 0
\(876\) −9.88924 −0.334126
\(877\) −35.3951 −1.19521 −0.597604 0.801792i \(-0.703880\pi\)
−0.597604 + 0.801792i \(0.703880\pi\)
\(878\) −18.2305 −0.615250
\(879\) −82.6628 −2.78815
\(880\) 0 0
\(881\) 46.3047 1.56005 0.780023 0.625750i \(-0.215207\pi\)
0.780023 + 0.625750i \(0.215207\pi\)
\(882\) 64.8565 2.18383
\(883\) −36.2361 −1.21944 −0.609722 0.792616i \(-0.708719\pi\)
−0.609722 + 0.792616i \(0.708719\pi\)
\(884\) 5.13548 0.172725
\(885\) 0 0
\(886\) 2.44337 0.0820865
\(887\) 26.9498 0.904887 0.452443 0.891793i \(-0.350552\pi\)
0.452443 + 0.891793i \(0.350552\pi\)
\(888\) 50.4521 1.69306
\(889\) 2.42223 0.0812391
\(890\) 0 0
\(891\) −13.1357 −0.440062
\(892\) −9.12853 −0.305646
\(893\) −50.0835 −1.67598
\(894\) 52.5431 1.75731
\(895\) 0 0
\(896\) −1.67010 −0.0557940
\(897\) 60.7991 2.03002
\(898\) −27.5490 −0.919322
\(899\) −47.0846 −1.57036
\(900\) 0 0
\(901\) −42.4714 −1.41493
\(902\) 3.60374 0.119992
\(903\) 2.36093 0.0785667
\(904\) −29.5054 −0.981334
\(905\) 0 0
\(906\) −19.2128 −0.638303
\(907\) −5.26836 −0.174933 −0.0874664 0.996167i \(-0.527877\pi\)
−0.0874664 + 0.996167i \(0.527877\pi\)
\(908\) −6.73449 −0.223492
\(909\) 12.4818 0.413994
\(910\) 0 0
\(911\) 20.8539 0.690919 0.345459 0.938434i \(-0.387723\pi\)
0.345459 + 0.938434i \(0.387723\pi\)
\(912\) 71.4139 2.36475
\(913\) −3.03595 −0.100475
\(914\) 25.0463 0.828459
\(915\) 0 0
\(916\) 9.98975 0.330070
\(917\) 4.58648 0.151459
\(918\) −61.9414 −2.04437
\(919\) −9.82871 −0.324219 −0.162110 0.986773i \(-0.551830\pi\)
−0.162110 + 0.986773i \(0.551830\pi\)
\(920\) 0 0
\(921\) −8.37951 −0.276114
\(922\) −13.1729 −0.433827
\(923\) 30.4607 1.00263
\(924\) −0.164598 −0.00541486
\(925\) 0 0
\(926\) −13.9496 −0.458412
\(927\) −20.6005 −0.676610
\(928\) −17.7812 −0.583697
\(929\) 14.8642 0.487677 0.243839 0.969816i \(-0.421593\pi\)
0.243839 + 0.969816i \(0.421593\pi\)
\(930\) 0 0
\(931\) −49.7378 −1.63009
\(932\) −11.3901 −0.373096
\(933\) 63.7823 2.08814
\(934\) 26.6599 0.872340
\(935\) 0 0
\(936\) 86.4630 2.82613
\(937\) −56.7633 −1.85438 −0.927189 0.374594i \(-0.877782\pi\)
−0.927189 + 0.374594i \(0.877782\pi\)
\(938\) 0.771178 0.0251798
\(939\) 58.3058 1.90274
\(940\) 0 0
\(941\) −10.6242 −0.346341 −0.173170 0.984892i \(-0.555401\pi\)
−0.173170 + 0.984892i \(0.555401\pi\)
\(942\) 14.5144 0.472905
\(943\) −23.8144 −0.775503
\(944\) 44.5813 1.45100
\(945\) 0 0
\(946\) −2.29771 −0.0747049
\(947\) −35.9492 −1.16819 −0.584095 0.811685i \(-0.698551\pi\)
−0.584095 + 0.811685i \(0.698551\pi\)
\(948\) −0.472024 −0.0153306
\(949\) −31.7255 −1.02985
\(950\) 0 0
\(951\) −17.0212 −0.551952
\(952\) −2.48528 −0.0805484
\(953\) 54.1752 1.75491 0.877454 0.479661i \(-0.159240\pi\)
0.877454 + 0.479661i \(0.159240\pi\)
\(954\) −113.569 −3.67693
\(955\) 0 0
\(956\) −1.73292 −0.0560466
\(957\) 15.6651 0.506381
\(958\) 26.5643 0.858254
\(959\) 0.712717 0.0230148
\(960\) 0 0
\(961\) 0.0867807 0.00279938
\(962\) 25.7062 0.828803
\(963\) −47.6632 −1.53592
\(964\) −8.89731 −0.286563
\(965\) 0 0
\(966\) −4.67310 −0.150355
\(967\) 5.91237 0.190129 0.0950645 0.995471i \(-0.469694\pi\)
0.0950645 + 0.995471i \(0.469694\pi\)
\(968\) −32.3042 −1.03830
\(969\) 80.3989 2.58279
\(970\) 0 0
\(971\) −25.0906 −0.805195 −0.402597 0.915377i \(-0.631893\pi\)
−0.402597 + 0.915377i \(0.631893\pi\)
\(972\) 11.8536 0.380204
\(973\) 0.539344 0.0172906
\(974\) −34.7540 −1.11359
\(975\) 0 0
\(976\) 23.9401 0.766305
\(977\) 49.9680 1.59862 0.799309 0.600920i \(-0.205199\pi\)
0.799309 + 0.600920i \(0.205199\pi\)
\(978\) 10.0450 0.321202
\(979\) −4.82856 −0.154322
\(980\) 0 0
\(981\) 87.9129 2.80684
\(982\) −19.9090 −0.635321
\(983\) −43.1014 −1.37472 −0.687361 0.726316i \(-0.741231\pi\)
−0.687361 + 0.726316i \(0.741231\pi\)
\(984\) −47.7239 −1.52138
\(985\) 0 0
\(986\) 37.5663 1.19636
\(987\) 5.28181 0.168122
\(988\) −10.5312 −0.335041
\(989\) 15.1838 0.482817
\(990\) 0 0
\(991\) −39.3870 −1.25117 −0.625585 0.780156i \(-0.715140\pi\)
−0.625585 + 0.780156i \(0.715140\pi\)
\(992\) 11.7397 0.372737
\(993\) −94.0072 −2.98323
\(994\) −2.34125 −0.0742600
\(995\) 0 0
\(996\) 6.38542 0.202330
\(997\) 53.8563 1.70565 0.852823 0.522200i \(-0.174888\pi\)
0.852823 + 0.522200i \(0.174888\pi\)
\(998\) 29.0340 0.919056
\(999\) 72.1676 2.28328
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.r.1.17 49
5.2 odd 4 985.2.b.a.789.31 98
5.3 odd 4 985.2.b.a.789.68 yes 98
5.4 even 2 4925.2.a.s.1.33 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.31 98 5.2 odd 4
985.2.b.a.789.68 yes 98 5.3 odd 4
4925.2.a.r.1.17 49 1.1 even 1 trivial
4925.2.a.s.1.33 49 5.4 even 2