Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4925,2,Mod(1,4925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4925.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4925 = 5^{2} \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4925.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(39.3263229955\) |
Analytic rank: | \(1\) |
Dimension: | \(49\) |
Twist minimal: | no (minimal twist has level 985) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.79089 | 0.406400 | 5.78908 | 0 | −1.13422 | −1.50513 | −10.5749 | −2.83484 | 0 | ||||||||||||||||||
1.2 | −2.63405 | −1.88963 | 4.93820 | 0 | 4.97737 | 0.201886 | −7.73937 | 0.570696 | 0 | ||||||||||||||||||
1.3 | −2.59061 | 2.33246 | 4.71127 | 0 | −6.04251 | −4.16518 | −7.02386 | 2.44038 | 0 | ||||||||||||||||||
1.4 | −2.58552 | −3.08353 | 4.68492 | 0 | 7.97252 | 3.10556 | −6.94192 | 6.50813 | 0 | ||||||||||||||||||
1.5 | −2.51668 | −3.09870 | 4.33369 | 0 | 7.79844 | −2.79664 | −5.87315 | 6.60194 | 0 | ||||||||||||||||||
1.6 | −2.46587 | 0.597412 | 4.08052 | 0 | −1.47314 | −1.55114 | −5.13031 | −2.64310 | 0 | ||||||||||||||||||
1.7 | −2.33154 | −1.66088 | 3.43607 | 0 | 3.87240 | −1.15133 | −3.34826 | −0.241482 | 0 | ||||||||||||||||||
1.8 | −2.32198 | −2.63224 | 3.39157 | 0 | 6.11200 | −5.08302 | −3.23120 | 3.92870 | 0 | ||||||||||||||||||
1.9 | −2.16529 | 0.704498 | 2.68847 | 0 | −1.52544 | 4.65089 | −1.49074 | −2.50368 | 0 | ||||||||||||||||||
1.10 | −1.97563 | 2.19256 | 1.90311 | 0 | −4.33169 | 2.78164 | 0.191426 | 1.80734 | 0 | ||||||||||||||||||
1.11 | −1.83076 | 2.81413 | 1.35169 | 0 | −5.15201 | −2.14355 | 1.18690 | 4.91935 | 0 | ||||||||||||||||||
1.12 | −1.74510 | −2.11665 | 1.04537 | 0 | 3.69377 | −2.11819 | 1.66592 | 1.48022 | 0 | ||||||||||||||||||
1.13 | −1.61100 | 1.75987 | 0.595328 | 0 | −2.83515 | 1.48382 | 2.26293 | 0.0971430 | 0 | ||||||||||||||||||
1.14 | −1.45182 | −0.257058 | 0.107768 | 0 | 0.373200 | −4.95623 | 2.74717 | −2.93392 | 0 | ||||||||||||||||||
1.15 | −1.34195 | −0.0980382 | −0.199165 | 0 | 0.131563 | 0.0228448 | 2.95117 | −2.99039 | 0 | ||||||||||||||||||
1.16 | −1.29247 | −1.51932 | −0.329522 | 0 | 1.96368 | 2.88465 | 3.01084 | −0.691664 | 0 | ||||||||||||||||||
1.17 | −1.27373 | −3.21433 | −0.377621 | 0 | 4.09418 | 0.234977 | 3.02844 | 7.33194 | 0 | ||||||||||||||||||
1.18 | −1.01022 | 0.344075 | −0.979461 | 0 | −0.347590 | 0.0648861 | 3.00990 | −2.88161 | 0 | ||||||||||||||||||
1.19 | −0.949495 | 1.30028 | −1.09846 | 0 | −1.23461 | 1.82879 | 2.94197 | −1.30928 | 0 | ||||||||||||||||||
1.20 | −0.862325 | −3.33083 | −1.25639 | 0 | 2.87226 | −3.93497 | 2.80807 | 8.09446 | 0 | ||||||||||||||||||
See all 49 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(197\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4925.2.a.r | 49 | |
5.b | even | 2 | 1 | 4925.2.a.s | 49 | ||
5.c | odd | 4 | 2 | 985.2.b.a | ✓ | 98 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
985.2.b.a | ✓ | 98 | 5.c | odd | 4 | 2 | |
4925.2.a.r | 49 | 1.a | even | 1 | 1 | trivial | |
4925.2.a.s | 49 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4925))\):
\( T_{2}^{49} + 5 T_{2}^{48} - 61 T_{2}^{47} - 335 T_{2}^{46} + 1683 T_{2}^{45} + 10421 T_{2}^{44} + \cdots + 16732 \) |
\( T_{3}^{49} + 22 T_{3}^{48} + 143 T_{3}^{47} - 330 T_{3}^{46} - 8029 T_{3}^{45} - 21618 T_{3}^{44} + \cdots - 54784 \) |