Properties

Label 99.2.j.a.17.3
Level $99$
Weight $2$
Character 99.17
Analytic conductor $0.791$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(8,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.j (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 17.3
Root \(-1.90184 - 0.0324487i\) of defining polynomial
Character \(\chi\) \(=\) 99.17
Dual form 99.2.j.a.35.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.212694 + 0.654604i) q^{2} +(1.23477 - 0.897110i) q^{4} +(-0.0381457 - 0.0123943i) q^{5} +(0.145094 + 0.199704i) q^{7} +(1.96356 + 1.42661i) q^{8} -0.0276065i q^{10} +(-3.12033 + 1.12407i) q^{11} +(-2.18888 + 0.711209i) q^{13} +(-0.0998667 + 0.137455i) q^{14} +(0.427051 - 1.31433i) q^{16} +(1.32142 - 4.06692i) q^{17} +(-3.64429 + 5.01593i) q^{19} +(-0.0582200 + 0.0189168i) q^{20} +(-1.39949 - 1.80350i) q^{22} -6.79984i q^{23} +(-4.04378 - 2.93798i) q^{25} +(-0.931121 - 1.28158i) q^{26} +(0.358314 + 0.116423i) q^{28} +(-4.52705 + 3.28909i) q^{29} +(1.48247 + 4.56258i) q^{31} +5.80538 q^{32} +2.94328 q^{34} +(-0.00305951 - 0.00941619i) q^{35} +(3.26102 - 2.36927i) q^{37} +(-4.05857 - 1.31871i) q^{38} +(-0.0572194 - 0.0787558i) q^{40} +(7.76893 + 5.64446i) q^{41} +1.03166i q^{43} +(-2.84447 + 4.18724i) q^{44} +(4.45120 - 1.44628i) q^{46} +(-6.53982 + 9.00129i) q^{47} +(2.14429 - 6.59944i) q^{49} +(1.06313 - 3.27197i) q^{50} +(-2.06472 + 2.84184i) q^{52} +(8.52885 - 2.77119i) q^{53} +(0.132959 - 0.00420408i) q^{55} +0.599123i q^{56} +(-3.11593 - 2.26385i) q^{58} +(1.63893 + 2.25580i) q^{59} +(8.06923 + 2.62185i) q^{61} +(-2.67137 + 1.94086i) q^{62} +(0.380665 + 1.17156i) q^{64} +0.0923111 q^{65} +7.94588 q^{67} +(-2.01683 - 6.20715i) q^{68} +(0.00551314 - 0.00400553i) q^{70} +(-3.16559 - 1.02856i) q^{71} +(-6.96743 - 9.58984i) q^{73} +(2.24453 + 1.63075i) q^{74} +9.46284i q^{76} +(-0.677222 - 0.460048i) q^{77} +(-2.86363 + 0.930451i) q^{79} +(-0.0325803 + 0.0448429i) q^{80} +(-2.04248 + 6.28611i) q^{82} +(1.63587 - 5.03470i) q^{83} +(-0.100813 + 0.138757i) q^{85} +(-0.675331 + 0.219428i) q^{86} +(-7.73055 - 2.24432i) q^{88} -8.54422i q^{89} +(-0.459624 - 0.333936i) q^{91} +(-6.10021 - 8.39621i) q^{92} +(-7.28326 - 2.36647i) q^{94} +(0.201183 - 0.146168i) q^{95} +(-0.935778 - 2.88003i) q^{97} +4.77610 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 20 q^{16} - 48 q^{22} - 32 q^{25} + 40 q^{28} + 16 q^{31} + 40 q^{34} - 12 q^{37} + 60 q^{40} - 40 q^{46} - 24 q^{49} - 40 q^{52} + 16 q^{55} + 12 q^{58} + 36 q^{64} + 96 q^{67} + 76 q^{70}+ \cdots + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.212694 + 0.654604i 0.150397 + 0.462875i 0.997665 0.0682903i \(-0.0217544\pi\)
−0.847268 + 0.531165i \(0.821754\pi\)
\(3\) 0 0
\(4\) 1.23477 0.897110i 0.617383 0.448555i
\(5\) −0.0381457 0.0123943i −0.0170593 0.00554289i 0.300475 0.953790i \(-0.402855\pi\)
−0.317534 + 0.948247i \(0.602855\pi\)
\(6\) 0 0
\(7\) 0.145094 + 0.199704i 0.0548403 + 0.0754811i 0.835556 0.549405i \(-0.185145\pi\)
−0.780716 + 0.624886i \(0.785145\pi\)
\(8\) 1.96356 + 1.42661i 0.694222 + 0.504382i
\(9\) 0 0
\(10\) 0.0276065i 0.00872994i
\(11\) −3.12033 + 1.12407i −0.940815 + 0.338919i
\(12\) 0 0
\(13\) −2.18888 + 0.711209i −0.607085 + 0.197254i −0.596398 0.802689i \(-0.703402\pi\)
−0.0106874 + 0.999943i \(0.503402\pi\)
\(14\) −0.0998667 + 0.137455i −0.0266905 + 0.0367363i
\(15\) 0 0
\(16\) 0.427051 1.31433i 0.106763 0.328582i
\(17\) 1.32142 4.06692i 0.320492 0.986372i −0.652943 0.757407i \(-0.726466\pi\)
0.973435 0.228965i \(-0.0735342\pi\)
\(18\) 0 0
\(19\) −3.64429 + 5.01593i −0.836057 + 1.15073i 0.150708 + 0.988578i \(0.451845\pi\)
−0.986765 + 0.162156i \(0.948155\pi\)
\(20\) −0.0582200 + 0.0189168i −0.0130184 + 0.00422993i
\(21\) 0 0
\(22\) −1.39949 1.80350i −0.298373 0.384507i
\(23\) 6.79984i 1.41786i −0.705277 0.708932i \(-0.749177\pi\)
0.705277 0.708932i \(-0.250823\pi\)
\(24\) 0 0
\(25\) −4.04378 2.93798i −0.808757 0.587596i
\(26\) −0.931121 1.28158i −0.182608 0.251338i
\(27\) 0 0
\(28\) 0.358314 + 0.116423i 0.0677149 + 0.0220019i
\(29\) −4.52705 + 3.28909i −0.840652 + 0.610769i −0.922553 0.385871i \(-0.873901\pi\)
0.0819007 + 0.996640i \(0.473901\pi\)
\(30\) 0 0
\(31\) 1.48247 + 4.56258i 0.266260 + 0.819463i 0.991401 + 0.130863i \(0.0417747\pi\)
−0.725141 + 0.688601i \(0.758225\pi\)
\(32\) 5.80538 1.02626
\(33\) 0 0
\(34\) 2.94328 0.504768
\(35\) −0.00305951 0.00941619i −0.000517151 0.00159163i
\(36\) 0 0
\(37\) 3.26102 2.36927i 0.536109 0.389506i −0.286529 0.958072i \(-0.592502\pi\)
0.822638 + 0.568566i \(0.192502\pi\)
\(38\) −4.05857 1.31871i −0.658386 0.213923i
\(39\) 0 0
\(40\) −0.0572194 0.0787558i −0.00904719 0.0124524i
\(41\) 7.76893 + 5.64446i 1.21330 + 0.881517i 0.995527 0.0944820i \(-0.0301195\pi\)
0.217777 + 0.975999i \(0.430119\pi\)
\(42\) 0 0
\(43\) 1.03166i 0.157327i 0.996901 + 0.0786636i \(0.0250653\pi\)
−0.996901 + 0.0786636i \(0.974935\pi\)
\(44\) −2.84447 + 4.18724i −0.428820 + 0.631251i
\(45\) 0 0
\(46\) 4.45120 1.44628i 0.656294 0.213243i
\(47\) −6.53982 + 9.00129i −0.953931 + 1.31297i −0.00417211 + 0.999991i \(0.501328\pi\)
−0.949759 + 0.312982i \(0.898672\pi\)
\(48\) 0 0
\(49\) 2.14429 6.59944i 0.306327 0.942778i
\(50\) 1.06313 3.27197i 0.150349 0.462726i
\(51\) 0 0
\(52\) −2.06472 + 2.84184i −0.286325 + 0.394093i
\(53\) 8.52885 2.77119i 1.17153 0.380652i 0.342314 0.939585i \(-0.388789\pi\)
0.829213 + 0.558933i \(0.188789\pi\)
\(54\) 0 0
\(55\) 0.132959 0.00420408i 0.0179282 0.000566878i
\(56\) 0.599123i 0.0800611i
\(57\) 0 0
\(58\) −3.11593 2.26385i −0.409141 0.297259i
\(59\) 1.63893 + 2.25580i 0.213371 + 0.293680i 0.902265 0.431182i \(-0.141903\pi\)
−0.688894 + 0.724862i \(0.741903\pi\)
\(60\) 0 0
\(61\) 8.06923 + 2.62185i 1.03316 + 0.335694i 0.776039 0.630685i \(-0.217226\pi\)
0.257121 + 0.966379i \(0.417226\pi\)
\(62\) −2.67137 + 1.94086i −0.339264 + 0.246490i
\(63\) 0 0
\(64\) 0.380665 + 1.17156i 0.0475831 + 0.146446i
\(65\) 0.0923111 0.0114498
\(66\) 0 0
\(67\) 7.94588 0.970744 0.485372 0.874308i \(-0.338684\pi\)
0.485372 + 0.874308i \(0.338684\pi\)
\(68\) −2.01683 6.20715i −0.244576 0.752728i
\(69\) 0 0
\(70\) 0.00551314 0.00400553i 0.000658946 0.000478752i
\(71\) −3.16559 1.02856i −0.375687 0.122068i 0.115086 0.993355i \(-0.463286\pi\)
−0.490773 + 0.871288i \(0.663286\pi\)
\(72\) 0 0
\(73\) −6.96743 9.58984i −0.815476 1.12241i −0.990455 0.137834i \(-0.955986\pi\)
0.174980 0.984572i \(-0.444014\pi\)
\(74\) 2.24453 + 1.63075i 0.260922 + 0.189571i
\(75\) 0 0
\(76\) 9.46284i 1.08546i
\(77\) −0.677222 0.460048i −0.0771766 0.0524274i
\(78\) 0 0
\(79\) −2.86363 + 0.930451i −0.322184 + 0.104684i −0.465644 0.884972i \(-0.654177\pi\)
0.143460 + 0.989656i \(0.454177\pi\)
\(80\) −0.0325803 + 0.0448429i −0.00364259 + 0.00501359i
\(81\) 0 0
\(82\) −2.04248 + 6.28611i −0.225554 + 0.694185i
\(83\) 1.63587 5.03470i 0.179560 0.552630i −0.820252 0.572002i \(-0.806167\pi\)
0.999812 + 0.0193724i \(0.00616680\pi\)
\(84\) 0 0
\(85\) −0.100813 + 0.138757i −0.0109347 + 0.0150503i
\(86\) −0.675331 + 0.219428i −0.0728228 + 0.0236616i
\(87\) 0 0
\(88\) −7.73055 2.24432i −0.824080 0.239245i
\(89\) 8.54422i 0.905686i −0.891590 0.452843i \(-0.850410\pi\)
0.891590 0.452843i \(-0.149590\pi\)
\(90\) 0 0
\(91\) −0.459624 0.333936i −0.0481817 0.0350060i
\(92\) −6.10021 8.39621i −0.635991 0.875366i
\(93\) 0 0
\(94\) −7.28326 2.36647i −0.751211 0.244083i
\(95\) 0.201183 0.146168i 0.0206409 0.0149965i
\(96\) 0 0
\(97\) −0.935778 2.88003i −0.0950139 0.292423i 0.892243 0.451555i \(-0.149130\pi\)
−0.987257 + 0.159132i \(0.949130\pi\)
\(98\) 4.77610 0.482459
\(99\) 0 0
\(100\) −7.62882 −0.762882
\(101\) 2.14828 + 6.61172i 0.213762 + 0.657891i 0.999239 + 0.0390007i \(0.0124175\pi\)
−0.785477 + 0.618890i \(0.787583\pi\)
\(102\) 0 0
\(103\) −10.6138 + 7.71139i −1.04581 + 0.759826i −0.971411 0.237402i \(-0.923704\pi\)
−0.0743996 + 0.997229i \(0.523704\pi\)
\(104\) −5.31260 1.72617i −0.520944 0.169265i
\(105\) 0 0
\(106\) 3.62806 + 4.99360i 0.352389 + 0.485021i
\(107\) 1.10712 + 0.804368i 0.107029 + 0.0777612i 0.640012 0.768365i \(-0.278929\pi\)
−0.532983 + 0.846126i \(0.678929\pi\)
\(108\) 0 0
\(109\) 7.34454i 0.703480i −0.936098 0.351740i \(-0.885590\pi\)
0.936098 0.351740i \(-0.114410\pi\)
\(110\) 0.0310316 + 0.0861414i 0.00295875 + 0.00821326i
\(111\) 0 0
\(112\) 0.324439 0.105417i 0.0306566 0.00996094i
\(113\) −0.310669 + 0.427600i −0.0292253 + 0.0402252i −0.823380 0.567491i \(-0.807914\pi\)
0.794154 + 0.607716i \(0.207914\pi\)
\(114\) 0 0
\(115\) −0.0842791 + 0.259385i −0.00785907 + 0.0241877i
\(116\) −2.63917 + 8.12253i −0.245041 + 0.754158i
\(117\) 0 0
\(118\) −1.12806 + 1.55265i −0.103847 + 0.142933i
\(119\) 1.00391 0.326190i 0.0920284 0.0299018i
\(120\) 0 0
\(121\) 8.47294 7.01493i 0.770267 0.637721i
\(122\) 5.83980i 0.528711i
\(123\) 0 0
\(124\) 5.92364 + 4.30378i 0.531959 + 0.386491i
\(125\) 0.235715 + 0.324434i 0.0210830 + 0.0290183i
\(126\) 0 0
\(127\) 12.1468 + 3.94673i 1.07785 + 0.350215i 0.793541 0.608517i \(-0.208235\pi\)
0.284311 + 0.958732i \(0.408235\pi\)
\(128\) 8.70735 6.32626i 0.769628 0.559168i
\(129\) 0 0
\(130\) 0.0196340 + 0.0604272i 0.00172202 + 0.00529982i
\(131\) −18.1534 −1.58607 −0.793033 0.609178i \(-0.791499\pi\)
−0.793033 + 0.609178i \(0.791499\pi\)
\(132\) 0 0
\(133\) −1.53047 −0.132708
\(134\) 1.69004 + 5.20140i 0.145997 + 0.449333i
\(135\) 0 0
\(136\) 8.39658 6.10048i 0.720001 0.523111i
\(137\) 15.2863 + 4.96682i 1.30600 + 0.424344i 0.877664 0.479276i \(-0.159101\pi\)
0.428334 + 0.903621i \(0.359101\pi\)
\(138\) 0 0
\(139\) 2.26727 + 3.12062i 0.192307 + 0.264688i 0.894272 0.447523i \(-0.147694\pi\)
−0.701965 + 0.712211i \(0.747694\pi\)
\(140\) −0.0122251 0.00888208i −0.00103321 0.000750673i
\(141\) 0 0
\(142\) 2.29098i 0.192255i
\(143\) 6.03057 4.67966i 0.504302 0.391333i
\(144\) 0 0
\(145\) 0.213453 0.0693552i 0.0177263 0.00575964i
\(146\) 4.79562 6.60060i 0.396888 0.546270i
\(147\) 0 0
\(148\) 1.90110 5.85099i 0.156270 0.480949i
\(149\) −3.17360 + 9.76734i −0.259992 + 0.800172i 0.732813 + 0.680430i \(0.238207\pi\)
−0.992805 + 0.119742i \(0.961793\pi\)
\(150\) 0 0
\(151\) 5.15512 7.09542i 0.419518 0.577417i −0.545990 0.837792i \(-0.683846\pi\)
0.965508 + 0.260375i \(0.0838462\pi\)
\(152\) −14.3115 + 4.65010i −1.16082 + 0.377173i
\(153\) 0 0
\(154\) 0.157109 0.541161i 0.0126602 0.0436080i
\(155\) 0.192417i 0.0154553i
\(156\) 0 0
\(157\) 10.5422 + 7.65934i 0.841357 + 0.611282i 0.922749 0.385400i \(-0.125937\pi\)
−0.0813923 + 0.996682i \(0.525937\pi\)
\(158\) −1.21815 1.67664i −0.0969111 0.133387i
\(159\) 0 0
\(160\) −0.221450 0.0719535i −0.0175072 0.00568842i
\(161\) 1.35796 0.986614i 0.107022 0.0777561i
\(162\) 0 0
\(163\) −2.83608 8.72855i −0.222139 0.683673i −0.998569 0.0534700i \(-0.982972\pi\)
0.776431 0.630203i \(-0.217028\pi\)
\(164\) 14.6565 1.14448
\(165\) 0 0
\(166\) 3.64367 0.282804
\(167\) 2.35141 + 7.23691i 0.181958 + 0.560009i 0.999883 0.0153164i \(-0.00487554\pi\)
−0.817925 + 0.575325i \(0.804876\pi\)
\(168\) 0 0
\(169\) −6.23186 + 4.52771i −0.479374 + 0.348285i
\(170\) −0.112273 0.0364798i −0.00861097 0.00279787i
\(171\) 0 0
\(172\) 0.925516 + 1.27386i 0.0705699 + 0.0971312i
\(173\) −13.4462 9.76923i −1.02230 0.742741i −0.0555432 0.998456i \(-0.517689\pi\)
−0.966752 + 0.255715i \(0.917689\pi\)
\(174\) 0 0
\(175\) 1.23384i 0.0932698i
\(176\) 0.144854 + 4.58117i 0.0109188 + 0.345319i
\(177\) 0 0
\(178\) 5.59308 1.81730i 0.419219 0.136213i
\(179\) 4.14376 5.70340i 0.309719 0.426292i −0.625574 0.780165i \(-0.715135\pi\)
0.935294 + 0.353872i \(0.115135\pi\)
\(180\) 0 0
\(181\) −6.52756 + 20.0898i −0.485189 + 1.49326i 0.346517 + 0.938044i \(0.387364\pi\)
−0.831706 + 0.555216i \(0.812636\pi\)
\(182\) 0.120837 0.371898i 0.00895702 0.0275669i
\(183\) 0 0
\(184\) 9.70070 13.3519i 0.715145 0.984313i
\(185\) −0.153759 + 0.0499594i −0.0113046 + 0.00367309i
\(186\) 0 0
\(187\) 0.448220 + 14.1755i 0.0327771 + 1.03662i
\(188\) 16.9814i 1.23850i
\(189\) 0 0
\(190\) 0.138472 + 0.100606i 0.0100458 + 0.00729873i
\(191\) 8.03400 + 11.0579i 0.581320 + 0.800118i 0.993839 0.110831i \(-0.0353511\pi\)
−0.412519 + 0.910949i \(0.635351\pi\)
\(192\) 0 0
\(193\) −23.8096 7.73620i −1.71385 0.556864i −0.722884 0.690969i \(-0.757184\pi\)
−0.990967 + 0.134105i \(0.957184\pi\)
\(194\) 1.68624 1.22513i 0.121065 0.0879590i
\(195\) 0 0
\(196\) −3.27273 10.0724i −0.233767 0.719460i
\(197\) −21.0442 −1.49934 −0.749668 0.661814i \(-0.769787\pi\)
−0.749668 + 0.661814i \(0.769787\pi\)
\(198\) 0 0
\(199\) −10.3709 −0.735176 −0.367588 0.929989i \(-0.619816\pi\)
−0.367588 + 0.929989i \(0.619816\pi\)
\(200\) −3.74885 11.5378i −0.265084 0.815845i
\(201\) 0 0
\(202\) −3.87113 + 2.81254i −0.272372 + 0.197890i
\(203\) −1.31369 0.426845i −0.0922031 0.0299586i
\(204\) 0 0
\(205\) −0.226392 0.311602i −0.0158119 0.0217632i
\(206\) −7.30540 5.30768i −0.508991 0.369804i
\(207\) 0 0
\(208\) 3.18062i 0.220537i
\(209\) 5.73314 19.7478i 0.396569 1.36598i
\(210\) 0 0
\(211\) −17.8262 + 5.79210i −1.22721 + 0.398744i −0.849702 0.527263i \(-0.823218\pi\)
−0.377506 + 0.926007i \(0.623218\pi\)
\(212\) 8.04507 11.0731i 0.552538 0.760503i
\(213\) 0 0
\(214\) −0.291066 + 0.895808i −0.0198968 + 0.0612361i
\(215\) 0.0127867 0.0393535i 0.000872048 0.00268389i
\(216\) 0 0
\(217\) −0.696069 + 0.958057i −0.0472523 + 0.0650372i
\(218\) 4.80776 1.56214i 0.325623 0.105801i
\(219\) 0 0
\(220\) 0.160402 0.124470i 0.0108143 0.00839178i
\(221\) 9.84179i 0.662031i
\(222\) 0 0
\(223\) −7.82233 5.68326i −0.523822 0.380579i 0.294220 0.955738i \(-0.404940\pi\)
−0.818042 + 0.575159i \(0.804940\pi\)
\(224\) 0.842323 + 1.15936i 0.0562801 + 0.0774629i
\(225\) 0 0
\(226\) −0.345986 0.112418i −0.0230146 0.00747791i
\(227\) 9.47859 6.88660i 0.629116 0.457080i −0.226978 0.973900i \(-0.572884\pi\)
0.856094 + 0.516820i \(0.172884\pi\)
\(228\) 0 0
\(229\) 6.32872 + 19.4778i 0.418214 + 1.28713i 0.909345 + 0.416044i \(0.136584\pi\)
−0.491131 + 0.871086i \(0.663416\pi\)
\(230\) −0.187720 −0.0123779
\(231\) 0 0
\(232\) −13.5814 −0.891661
\(233\) −4.98842 15.3528i −0.326802 1.00579i −0.970621 0.240615i \(-0.922651\pi\)
0.643818 0.765178i \(-0.277349\pi\)
\(234\) 0 0
\(235\) 0.361031 0.262304i 0.0235510 0.0171108i
\(236\) 4.04740 + 1.31508i 0.263463 + 0.0856044i
\(237\) 0 0
\(238\) 0.427051 + 0.587785i 0.0276816 + 0.0381005i
\(239\) −22.9660 16.6858i −1.48555 1.07931i −0.975716 0.219038i \(-0.929708\pi\)
−0.509830 0.860275i \(-0.670292\pi\)
\(240\) 0 0
\(241\) 14.3654i 0.925357i −0.886526 0.462679i \(-0.846888\pi\)
0.886526 0.462679i \(-0.153112\pi\)
\(242\) 6.39414 + 4.05439i 0.411031 + 0.260626i
\(243\) 0 0
\(244\) 12.3157 4.00162i 0.788433 0.256177i
\(245\) −0.163591 + 0.225163i −0.0104514 + 0.0143852i
\(246\) 0 0
\(247\) 4.40952 13.5711i 0.280571 0.863509i
\(248\) −3.59809 + 11.0738i −0.228479 + 0.703186i
\(249\) 0 0
\(250\) −0.162241 + 0.223305i −0.0102610 + 0.0141231i
\(251\) −6.60298 + 2.14544i −0.416776 + 0.135419i −0.509896 0.860236i \(-0.670316\pi\)
0.0931196 + 0.995655i \(0.470316\pi\)
\(252\) 0 0
\(253\) 7.64348 + 21.2178i 0.480542 + 1.33395i
\(254\) 8.79077i 0.551582i
\(255\) 0 0
\(256\) 7.98638 + 5.80244i 0.499149 + 0.362653i
\(257\) 6.12372 + 8.42858i 0.381987 + 0.525760i 0.956110 0.293009i \(-0.0946567\pi\)
−0.574122 + 0.818769i \(0.694657\pi\)
\(258\) 0 0
\(259\) 0.946307 + 0.307474i 0.0588007 + 0.0191055i
\(260\) 0.113983 0.0828133i 0.00706891 0.00513586i
\(261\) 0 0
\(262\) −3.86110 11.8833i −0.238540 0.734150i
\(263\) 4.26110 0.262751 0.131375 0.991333i \(-0.458061\pi\)
0.131375 + 0.991333i \(0.458061\pi\)
\(264\) 0 0
\(265\) −0.359686 −0.0220953
\(266\) −0.325521 1.00185i −0.0199589 0.0614273i
\(267\) 0 0
\(268\) 9.81131 7.12833i 0.599321 0.435432i
\(269\) 10.5223 + 3.41889i 0.641553 + 0.208453i 0.611686 0.791101i \(-0.290492\pi\)
0.0298672 + 0.999554i \(0.490492\pi\)
\(270\) 0 0
\(271\) 9.34327 + 12.8599i 0.567563 + 0.781184i 0.992263 0.124150i \(-0.0396205\pi\)
−0.424700 + 0.905334i \(0.639621\pi\)
\(272\) −4.78095 3.47356i −0.289888 0.210616i
\(273\) 0 0
\(274\) 11.0629i 0.668334i
\(275\) 15.9204 + 4.62198i 0.960038 + 0.278716i
\(276\) 0 0
\(277\) 10.7860 3.50458i 0.648066 0.210570i 0.0335051 0.999439i \(-0.489333\pi\)
0.614561 + 0.788869i \(0.289333\pi\)
\(278\) −1.56054 + 2.14790i −0.0935949 + 0.128822i
\(279\) 0 0
\(280\) 0.00742570 0.0228539i 0.000443770 0.00136578i
\(281\) −0.482158 + 1.48393i −0.0287631 + 0.0885238i −0.964408 0.264420i \(-0.914819\pi\)
0.935644 + 0.352944i \(0.114819\pi\)
\(282\) 0 0
\(283\) 15.6148 21.4919i 0.928202 1.27756i −0.0323551 0.999476i \(-0.510301\pi\)
0.960557 0.278084i \(-0.0896993\pi\)
\(284\) −4.83150 + 1.56985i −0.286697 + 0.0931534i
\(285\) 0 0
\(286\) 4.34599 + 2.95230i 0.256984 + 0.174573i
\(287\) 2.37046i 0.139924i
\(288\) 0 0
\(289\) −1.04038 0.755878i −0.0611986 0.0444634i
\(290\) 0.0908004 + 0.124976i 0.00533198 + 0.00733884i
\(291\) 0 0
\(292\) −17.2063 5.59066i −1.00692 0.327169i
\(293\) −21.3051 + 15.4791i −1.24466 + 0.904296i −0.997900 0.0647811i \(-0.979365\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(294\) 0 0
\(295\) −0.0345592 0.106362i −0.00201211 0.00619265i
\(296\) 9.78322 0.568638
\(297\) 0 0
\(298\) −7.06874 −0.409481
\(299\) 4.83611 + 14.8840i 0.279679 + 0.860765i
\(300\) 0 0
\(301\) −0.206028 + 0.149688i −0.0118752 + 0.00862786i
\(302\) 5.74115 + 1.86541i 0.330366 + 0.107342i
\(303\) 0 0
\(304\) 5.03628 + 6.93185i 0.288851 + 0.397569i
\(305\) −0.275310 0.200025i −0.0157642 0.0114534i
\(306\) 0 0
\(307\) 26.0083i 1.48437i −0.670195 0.742185i \(-0.733789\pi\)
0.670195 0.742185i \(-0.266211\pi\)
\(308\) −1.24892 + 0.0394902i −0.0711641 + 0.00225016i
\(309\) 0 0
\(310\) 0.125957 0.0409258i 0.00715387 0.00232443i
\(311\) 7.83210 10.7800i 0.444118 0.611276i −0.527003 0.849863i \(-0.676684\pi\)
0.971121 + 0.238588i \(0.0766844\pi\)
\(312\) 0 0
\(313\) −3.47592 + 10.6978i −0.196471 + 0.604675i 0.803486 + 0.595324i \(0.202976\pi\)
−0.999956 + 0.00935037i \(0.997024\pi\)
\(314\) −2.77158 + 8.53004i −0.156409 + 0.481378i
\(315\) 0 0
\(316\) −2.70120 + 3.71788i −0.151954 + 0.209147i
\(317\) −10.4166 + 3.38455i −0.585053 + 0.190095i −0.586563 0.809904i \(-0.699519\pi\)
0.00151019 + 0.999999i \(0.499519\pi\)
\(318\) 0 0
\(319\) 10.4287 15.3518i 0.583897 0.859535i
\(320\) 0.0494082i 0.00276200i
\(321\) 0 0
\(322\) 0.934670 + 0.679077i 0.0520871 + 0.0378435i
\(323\) 15.5837 + 21.4492i 0.867103 + 1.19346i
\(324\) 0 0
\(325\) 10.9409 + 3.55490i 0.606890 + 0.197191i
\(326\) 5.11052 3.71301i 0.283046 0.205645i
\(327\) 0 0
\(328\) 7.20231 + 22.1664i 0.397681 + 1.22394i
\(329\) −2.74648 −0.151419
\(330\) 0 0
\(331\) 4.23285 0.232659 0.116329 0.993211i \(-0.462887\pi\)
0.116329 + 0.993211i \(0.462887\pi\)
\(332\) −2.49676 7.68424i −0.137027 0.421727i
\(333\) 0 0
\(334\) −4.23718 + 3.07849i −0.231848 + 0.168447i
\(335\) −0.303101 0.0984835i −0.0165602 0.00538073i
\(336\) 0 0
\(337\) −1.56491 2.15391i −0.0852460 0.117331i 0.764264 0.644903i \(-0.223102\pi\)
−0.849510 + 0.527572i \(0.823102\pi\)
\(338\) −4.28933 3.11638i −0.233309 0.169509i
\(339\) 0 0
\(340\) 0.261773i 0.0141966i
\(341\) −9.75446 12.5704i −0.528233 0.680723i
\(342\) 0 0
\(343\) 3.27243 1.06328i 0.176694 0.0574115i
\(344\) −1.47178 + 2.02573i −0.0793530 + 0.109220i
\(345\) 0 0
\(346\) 3.53506 10.8798i 0.190046 0.584901i
\(347\) 5.13066 15.7905i 0.275428 0.847681i −0.713678 0.700474i \(-0.752972\pi\)
0.989106 0.147207i \(-0.0470282\pi\)
\(348\) 0 0
\(349\) −8.09660 + 11.1440i −0.433401 + 0.596525i −0.968730 0.248118i \(-0.920188\pi\)
0.535329 + 0.844644i \(0.320188\pi\)
\(350\) 0.807679 0.262431i 0.0431722 0.0140275i
\(351\) 0 0
\(352\) −18.1147 + 6.52564i −0.965517 + 0.347818i
\(353\) 11.0249i 0.586795i 0.955990 + 0.293398i \(0.0947860\pi\)
−0.955990 + 0.293398i \(0.905214\pi\)
\(354\) 0 0
\(355\) 0.108005 + 0.0784705i 0.00573233 + 0.00416478i
\(356\) −7.66511 10.5501i −0.406250 0.559155i
\(357\) 0 0
\(358\) 4.61482 + 1.49945i 0.243901 + 0.0792482i
\(359\) 15.3828 11.1763i 0.811875 0.589862i −0.102499 0.994733i \(-0.532684\pi\)
0.914374 + 0.404871i \(0.132684\pi\)
\(360\) 0 0
\(361\) −6.00743 18.4890i −0.316180 0.973103i
\(362\) −14.5392 −0.764163
\(363\) 0 0
\(364\) −0.867106 −0.0454487
\(365\) 0.146918 + 0.452167i 0.00769004 + 0.0236675i
\(366\) 0 0
\(367\) 4.60911 3.34872i 0.240594 0.174802i −0.460954 0.887424i \(-0.652493\pi\)
0.701548 + 0.712622i \(0.252493\pi\)
\(368\) −8.93722 2.90388i −0.465885 0.151375i
\(369\) 0 0
\(370\) −0.0654073 0.0900254i −0.00340036 0.00468020i
\(371\) 1.79090 + 1.30117i 0.0929789 + 0.0675531i
\(372\) 0 0
\(373\) 22.1594i 1.14737i 0.819076 + 0.573684i \(0.194486\pi\)
−0.819076 + 0.573684i \(0.805514\pi\)
\(374\) −9.18400 + 3.30845i −0.474893 + 0.171076i
\(375\) 0 0
\(376\) −25.6826 + 8.34479i −1.32448 + 0.430350i
\(377\) 7.56992 10.4191i 0.389871 0.536611i
\(378\) 0 0
\(379\) −0.117844 + 0.362687i −0.00605325 + 0.0186300i −0.954038 0.299687i \(-0.903118\pi\)
0.947984 + 0.318317i \(0.103118\pi\)
\(380\) 0.117285 0.360966i 0.00601660 0.0185172i
\(381\) 0 0
\(382\) −5.52973 + 7.61102i −0.282926 + 0.389414i
\(383\) 12.0446 3.91352i 0.615450 0.199972i 0.0153308 0.999882i \(-0.495120\pi\)
0.600119 + 0.799911i \(0.295120\pi\)
\(384\) 0 0
\(385\) 0.0201311 + 0.0259425i 0.00102598 + 0.00132215i
\(386\) 17.2313i 0.877049i
\(387\) 0 0
\(388\) −3.73917 2.71667i −0.189828 0.137918i
\(389\) −13.9885 19.2535i −0.709243 0.976190i −0.999813 0.0193359i \(-0.993845\pi\)
0.290570 0.956854i \(-0.406155\pi\)
\(390\) 0 0
\(391\) −27.6544 8.98546i −1.39854 0.454414i
\(392\) 13.6253 9.89933i 0.688179 0.499991i
\(393\) 0 0
\(394\) −4.47597 13.7756i −0.225496 0.694005i
\(395\) 0.120768 0.00607647
\(396\) 0 0
\(397\) 5.00497 0.251192 0.125596 0.992081i \(-0.459916\pi\)
0.125596 + 0.992081i \(0.459916\pi\)
\(398\) −2.20583 6.78886i −0.110568 0.340295i
\(399\) 0 0
\(400\) −5.58837 + 4.06019i −0.279419 + 0.203009i
\(401\) 4.03643 + 1.31151i 0.201570 + 0.0654939i 0.408062 0.912954i \(-0.366205\pi\)
−0.206492 + 0.978448i \(0.566205\pi\)
\(402\) 0 0
\(403\) −6.48990 8.93258i −0.323285 0.444963i
\(404\) 8.58407 + 6.23669i 0.427073 + 0.310287i
\(405\) 0 0
\(406\) 0.950735i 0.0471842i
\(407\) −7.51225 + 11.0585i −0.372368 + 0.548151i
\(408\) 0 0
\(409\) −11.2278 + 3.64812i −0.555177 + 0.180388i −0.573150 0.819450i \(-0.694279\pi\)
0.0179728 + 0.999838i \(0.494279\pi\)
\(410\) 0.155824 0.214473i 0.00769559 0.0105921i
\(411\) 0 0
\(412\) −6.18762 + 19.0435i −0.304842 + 0.938208i
\(413\) −0.212694 + 0.654604i −0.0104660 + 0.0322109i
\(414\) 0 0
\(415\) −0.124803 + 0.171777i −0.00612634 + 0.00843218i
\(416\) −12.7073 + 4.12884i −0.623024 + 0.202433i
\(417\) 0 0
\(418\) 14.1464 0.447299i 0.691923 0.0218781i
\(419\) 20.9795i 1.02492i −0.858712 0.512459i \(-0.828735\pi\)
0.858712 0.512459i \(-0.171265\pi\)
\(420\) 0 0
\(421\) 2.24889 + 1.63391i 0.109604 + 0.0796320i 0.641237 0.767343i \(-0.278421\pi\)
−0.531633 + 0.846975i \(0.678421\pi\)
\(422\) −7.58306 10.4372i −0.369137 0.508074i
\(423\) 0 0
\(424\) 20.7003 + 6.72593i 1.00529 + 0.326640i
\(425\) −17.2921 + 12.5634i −0.838789 + 0.609416i
\(426\) 0 0
\(427\) 0.647200 + 1.99188i 0.0313202 + 0.0963936i
\(428\) 2.08864 0.100958
\(429\) 0 0
\(430\) 0.0284806 0.00137346
\(431\) 8.63060 + 26.5623i 0.415722 + 1.27946i 0.911604 + 0.411070i \(0.134845\pi\)
−0.495882 + 0.868390i \(0.665155\pi\)
\(432\) 0 0
\(433\) 7.41714 5.38887i 0.356445 0.258973i −0.395123 0.918628i \(-0.629298\pi\)
0.751568 + 0.659656i \(0.229298\pi\)
\(434\) −0.775198 0.251877i −0.0372107 0.0120905i
\(435\) 0 0
\(436\) −6.58887 9.06879i −0.315549 0.434317i
\(437\) 34.1075 + 24.7806i 1.63159 + 1.18542i
\(438\) 0 0
\(439\) 2.93111i 0.139894i −0.997551 0.0699472i \(-0.977717\pi\)
0.997551 0.0699472i \(-0.0222831\pi\)
\(440\) 0.267071 + 0.181426i 0.0127321 + 0.00864913i
\(441\) 0 0
\(442\) −6.44247 + 2.09329i −0.306437 + 0.0995675i
\(443\) −21.0670 + 28.9963i −1.00093 + 1.37766i −0.0761695 + 0.997095i \(0.524269\pi\)
−0.924756 + 0.380561i \(0.875731\pi\)
\(444\) 0 0
\(445\) −0.105900 + 0.325925i −0.00502012 + 0.0154503i
\(446\) 2.05652 6.32932i 0.0973791 0.299702i
\(447\) 0 0
\(448\) −0.178735 + 0.246007i −0.00844441 + 0.0116227i
\(449\) 13.5184 4.39241i 0.637974 0.207290i 0.0278700 0.999612i \(-0.491128\pi\)
0.610104 + 0.792321i \(0.291128\pi\)
\(450\) 0 0
\(451\) −30.5864 8.87978i −1.44026 0.418132i
\(452\) 0.806691i 0.0379435i
\(453\) 0 0
\(454\) 6.52403 + 4.73999i 0.306188 + 0.222459i
\(455\) 0.0133938 + 0.0184349i 0.000627909 + 0.000864243i
\(456\) 0 0
\(457\) 19.4009 + 6.30372i 0.907534 + 0.294876i 0.725343 0.688387i \(-0.241681\pi\)
0.182191 + 0.983263i \(0.441681\pi\)
\(458\) −11.4042 + 8.28561i −0.532882 + 0.387161i
\(459\) 0 0
\(460\) 0.128631 + 0.395887i 0.00599747 + 0.0184583i
\(461\) 0.770354 0.0358790 0.0179395 0.999839i \(-0.494289\pi\)
0.0179395 + 0.999839i \(0.494289\pi\)
\(462\) 0 0
\(463\) 37.7948 1.75647 0.878236 0.478228i \(-0.158721\pi\)
0.878236 + 0.478228i \(0.158721\pi\)
\(464\) 2.38967 + 7.35464i 0.110937 + 0.341431i
\(465\) 0 0
\(466\) 8.98898 6.53088i 0.416406 0.302537i
\(467\) −16.7411 5.43950i −0.774684 0.251710i −0.105115 0.994460i \(-0.533521\pi\)
−0.669569 + 0.742750i \(0.733521\pi\)
\(468\) 0 0
\(469\) 1.15290 + 1.58683i 0.0532358 + 0.0732728i
\(470\) 0.248494 + 0.180542i 0.0114622 + 0.00832776i
\(471\) 0 0
\(472\) 6.76750i 0.311499i
\(473\) −1.15966 3.21913i −0.0533212 0.148016i
\(474\) 0 0
\(475\) 29.4734 9.57650i 1.35233 0.439400i
\(476\) 0.946967 1.30339i 0.0434042 0.0597407i
\(477\) 0 0
\(478\) 6.03785 18.5826i 0.276165 0.849948i
\(479\) −0.743452 + 2.28811i −0.0339692 + 0.104546i −0.966603 0.256277i \(-0.917504\pi\)
0.932634 + 0.360823i \(0.117504\pi\)
\(480\) 0 0
\(481\) −5.45293 + 7.50531i −0.248632 + 0.342213i
\(482\) 9.40365 3.05543i 0.428325 0.139171i
\(483\) 0 0
\(484\) 4.16893 16.2630i 0.189497 0.739226i
\(485\) 0.121459i 0.00551517i
\(486\) 0 0
\(487\) −11.8099 8.58039i −0.535157 0.388815i 0.287126 0.957893i \(-0.407300\pi\)
−0.822283 + 0.569078i \(0.807300\pi\)
\(488\) 12.1040 + 16.6598i 0.547924 + 0.754153i
\(489\) 0 0
\(490\) −0.182187 0.0591963i −0.00823039 0.00267422i
\(491\) 20.2597 14.7195i 0.914307 0.664283i −0.0277932 0.999614i \(-0.508848\pi\)
0.942101 + 0.335331i \(0.108848\pi\)
\(492\) 0 0
\(493\) 7.39433 + 22.7574i 0.333024 + 1.02494i
\(494\) 9.82158 0.441894
\(495\) 0 0
\(496\) 6.62982 0.297688
\(497\) −0.253899 0.781420i −0.0113889 0.0350515i
\(498\) 0 0
\(499\) −18.3740 + 13.3495i −0.822535 + 0.597607i −0.917438 0.397880i \(-0.869746\pi\)
0.0949025 + 0.995487i \(0.469746\pi\)
\(500\) 0.582107 + 0.189138i 0.0260326 + 0.00845851i
\(501\) 0 0
\(502\) −2.80882 3.86601i −0.125364 0.172549i
\(503\) 8.41953 + 6.11715i 0.375408 + 0.272750i 0.759450 0.650566i \(-0.225468\pi\)
−0.384042 + 0.923316i \(0.625468\pi\)
\(504\) 0 0
\(505\) 0.278835i 0.0124080i
\(506\) −12.2635 + 9.51634i −0.545179 + 0.423053i
\(507\) 0 0
\(508\) 18.5391 6.02371i 0.822539 0.267259i
\(509\) −4.75254 + 6.54130i −0.210652 + 0.289938i −0.901249 0.433302i \(-0.857348\pi\)
0.690596 + 0.723241i \(0.257348\pi\)
\(510\) 0 0
\(511\) 0.904203 2.78285i 0.0399996 0.123106i
\(512\) 4.55217 14.0102i 0.201180 0.619167i
\(513\) 0 0
\(514\) −4.21490 + 5.80132i −0.185911 + 0.255885i
\(515\) 0.500449 0.162606i 0.0220524 0.00716526i
\(516\) 0 0
\(517\) 10.2883 35.4382i 0.452481 1.55857i
\(518\) 0.684854i 0.0300908i
\(519\) 0 0
\(520\) 0.181258 + 0.131692i 0.00794870 + 0.00577507i
\(521\) −20.5846 28.3323i −0.901828 1.24126i −0.969881 0.243578i \(-0.921679\pi\)
0.0680535 0.997682i \(-0.478321\pi\)
\(522\) 0 0
\(523\) 41.1766 + 13.3791i 1.80052 + 0.585026i 0.999900 0.0141400i \(-0.00450104\pi\)
0.800625 + 0.599166i \(0.204501\pi\)
\(524\) −22.4152 + 16.2856i −0.979211 + 0.711438i
\(525\) 0 0
\(526\) 0.906309 + 2.78933i 0.0395169 + 0.121621i
\(527\) 20.5146 0.893630
\(528\) 0 0
\(529\) −23.2378 −1.01034
\(530\) −0.0765028 0.235452i −0.00332307 0.0102274i
\(531\) 0 0
\(532\) −1.88977 + 1.37300i −0.0819319 + 0.0595270i
\(533\) −21.0196 6.82969i −0.910461 0.295827i
\(534\) 0 0
\(535\) −0.0322622 0.0444051i −0.00139482 0.00191980i
\(536\) 15.6022 + 11.3357i 0.673912 + 0.489626i
\(537\) 0 0
\(538\) 7.61509i 0.328310i
\(539\) 0.727333 + 23.0028i 0.0313284 + 0.990800i
\(540\) 0 0
\(541\) −0.215252 + 0.0699396i −0.00925440 + 0.00300694i −0.313641 0.949542i \(-0.601549\pi\)
0.304386 + 0.952549i \(0.401549\pi\)
\(542\) −6.43089 + 8.85136i −0.276230 + 0.380198i
\(543\) 0 0
\(544\) 7.67135 23.6100i 0.328906 1.01227i
\(545\) −0.0910303 + 0.280163i −0.00389931 + 0.0120008i
\(546\) 0 0
\(547\) −9.67686 + 13.3191i −0.413753 + 0.569482i −0.964129 0.265435i \(-0.914484\pi\)
0.550376 + 0.834917i \(0.314484\pi\)
\(548\) 23.3308 7.58064i 0.996643 0.323829i
\(549\) 0 0
\(550\) 0.360607 + 11.4046i 0.0153763 + 0.486296i
\(551\) 34.6938i 1.47801i
\(552\) 0 0
\(553\) −0.601310 0.436877i −0.0255703 0.0185779i
\(554\) 4.58822 + 6.31514i 0.194935 + 0.268305i
\(555\) 0 0
\(556\) 5.59909 + 1.81925i 0.237454 + 0.0771535i
\(557\) −21.2624 + 15.4481i −0.900919 + 0.654556i −0.938702 0.344730i \(-0.887970\pi\)
0.0377832 + 0.999286i \(0.487970\pi\)
\(558\) 0 0
\(559\) −0.733729 2.25818i −0.0310334 0.0955110i
\(560\) −0.0136825 −0.000578192
\(561\) 0 0
\(562\) −1.07394 −0.0453013
\(563\) −11.2376 34.5859i −0.473610 1.45762i −0.847823 0.530279i \(-0.822087\pi\)
0.374213 0.927343i \(-0.377913\pi\)
\(564\) 0 0
\(565\) 0.0171505 0.0124606i 0.000721527 0.000524220i
\(566\) 17.3898 + 5.65030i 0.730949 + 0.237500i
\(567\) 0 0
\(568\) −4.74846 6.53570i −0.199241 0.274232i
\(569\) 16.3670 + 11.8913i 0.686138 + 0.498509i 0.875388 0.483420i \(-0.160606\pi\)
−0.189250 + 0.981929i \(0.560606\pi\)
\(570\) 0 0
\(571\) 24.4002i 1.02112i 0.859843 + 0.510558i \(0.170561\pi\)
−0.859843 + 0.510558i \(0.829439\pi\)
\(572\) 3.24818 11.1884i 0.135813 0.467809i
\(573\) 0 0
\(574\) −1.55172 + 0.504183i −0.0647673 + 0.0210442i
\(575\) −19.9778 + 27.4971i −0.833132 + 1.14671i
\(576\) 0 0
\(577\) −5.96494 + 18.3582i −0.248324 + 0.764262i 0.746748 + 0.665107i \(0.231614\pi\)
−0.995072 + 0.0991553i \(0.968386\pi\)
\(578\) 0.273519 0.841805i 0.0113769 0.0350145i
\(579\) 0 0
\(580\) 0.201346 0.277129i 0.00836043 0.0115071i
\(581\) 1.24281 0.403812i 0.0515603 0.0167530i
\(582\) 0 0
\(583\) −23.4978 + 18.2340i −0.973180 + 0.755177i
\(584\) 28.7700i 1.19051i
\(585\) 0 0
\(586\) −14.6641 10.6541i −0.605769 0.440117i
\(587\) −11.2480 15.4816i −0.464256 0.638994i 0.511128 0.859504i \(-0.329228\pi\)
−0.975385 + 0.220510i \(0.929228\pi\)
\(588\) 0 0
\(589\) −28.2882 9.19138i −1.16559 0.378724i
\(590\) 0.0622746 0.0452452i 0.00256381 0.00186271i
\(591\) 0 0
\(592\) −1.72138 5.29785i −0.0707481 0.217740i
\(593\) 14.9885 0.615503 0.307751 0.951467i \(-0.400423\pi\)
0.307751 + 0.951467i \(0.400423\pi\)
\(594\) 0 0
\(595\) −0.0423378 −0.00173568
\(596\) 4.84373 + 14.9075i 0.198407 + 0.610633i
\(597\) 0 0
\(598\) −8.71452 + 6.33147i −0.356363 + 0.258913i
\(599\) −31.7090 10.3029i −1.29560 0.420965i −0.421549 0.906806i \(-0.638513\pi\)
−0.874047 + 0.485841i \(0.838513\pi\)
\(600\) 0 0
\(601\) −24.8474 34.1996i −1.01355 1.39503i −0.916630 0.399737i \(-0.869102\pi\)
−0.0969178 0.995292i \(-0.530898\pi\)
\(602\) −0.141807 0.103029i −0.00577962 0.00419914i
\(603\) 0 0
\(604\) 13.3859i 0.544664i
\(605\) −0.410151 + 0.162573i −0.0166750 + 0.00660955i
\(606\) 0 0
\(607\) −29.3742 + 9.54427i −1.19226 + 0.387390i −0.836909 0.547342i \(-0.815640\pi\)
−0.355354 + 0.934732i \(0.615640\pi\)
\(608\) −21.1565 + 29.1194i −0.858008 + 1.18095i
\(609\) 0 0
\(610\) 0.0723802 0.222763i 0.00293059 0.00901942i
\(611\) 7.91306 24.3539i 0.320128 0.985254i
\(612\) 0 0
\(613\) −9.38958 + 12.9237i −0.379242 + 0.521981i −0.955383 0.295368i \(-0.904558\pi\)
0.576142 + 0.817350i \(0.304558\pi\)
\(614\) 17.0251 5.53179i 0.687078 0.223245i
\(615\) 0 0
\(616\) −0.673455 1.86946i −0.0271343 0.0753227i
\(617\) 2.63374i 0.106030i −0.998594 0.0530151i \(-0.983117\pi\)
0.998594 0.0530151i \(-0.0168831\pi\)
\(618\) 0 0
\(619\) −16.3822 11.9023i −0.658454 0.478395i 0.207686 0.978196i \(-0.433407\pi\)
−0.866141 + 0.499800i \(0.833407\pi\)
\(620\) −0.172619 0.237590i −0.00693255 0.00954184i
\(621\) 0 0
\(622\) 8.72244 + 2.83409i 0.349738 + 0.113637i
\(623\) 1.70632 1.23971i 0.0683622 0.0496680i
\(624\) 0 0
\(625\) 7.71797 + 23.7535i 0.308719 + 0.950139i
\(626\) −7.74212 −0.309437
\(627\) 0 0
\(628\) 19.8884 0.793633
\(629\) −5.32645 16.3931i −0.212379 0.653636i
\(630\) 0 0
\(631\) −6.82846 + 4.96116i −0.271837 + 0.197501i −0.715349 0.698767i \(-0.753732\pi\)
0.443512 + 0.896268i \(0.353732\pi\)
\(632\) −6.95030 2.25829i −0.276468 0.0898299i
\(633\) 0 0
\(634\) −4.43107 6.09885i −0.175980 0.242216i
\(635\) −0.414430 0.301101i −0.0164462 0.0119488i
\(636\) 0 0
\(637\) 15.9704i 0.632771i
\(638\) 12.2675 + 3.56146i 0.485673 + 0.141000i
\(639\) 0 0
\(640\) −0.410557 + 0.133398i −0.0162287 + 0.00527302i
\(641\) 18.9940 26.1429i 0.750216 1.03258i −0.247749 0.968824i \(-0.579691\pi\)
0.997965 0.0637599i \(-0.0203092\pi\)
\(642\) 0 0
\(643\) 4.25724 13.1024i 0.167889 0.516709i −0.831349 0.555751i \(-0.812431\pi\)
0.999238 + 0.0390421i \(0.0124306\pi\)
\(644\) 0.791659 2.43648i 0.0311957 0.0960106i
\(645\) 0 0
\(646\) −10.7262 + 14.7633i −0.422015 + 0.580854i
\(647\) −8.11003 + 2.63511i −0.318838 + 0.103597i −0.464064 0.885802i \(-0.653609\pi\)
0.145226 + 0.989399i \(0.453609\pi\)
\(648\) 0 0
\(649\) −7.64968 5.19656i −0.300276 0.203983i
\(650\) 7.91804i 0.310571i
\(651\) 0 0
\(652\) −11.3324 8.23344i −0.443810 0.322447i
\(653\) −0.710037 0.977282i −0.0277859 0.0382440i 0.794898 0.606743i \(-0.207524\pi\)
−0.822684 + 0.568499i \(0.807524\pi\)
\(654\) 0 0
\(655\) 0.692472 + 0.224998i 0.0270571 + 0.00879139i
\(656\) 10.7364 7.80045i 0.419186 0.304556i
\(657\) 0 0
\(658\) −0.584160 1.79786i −0.0227729 0.0700878i
\(659\) 9.41054 0.366583 0.183291 0.983059i \(-0.441325\pi\)
0.183291 + 0.983059i \(0.441325\pi\)
\(660\) 0 0
\(661\) 15.1027 0.587425 0.293713 0.955894i \(-0.405109\pi\)
0.293713 + 0.955894i \(0.405109\pi\)
\(662\) 0.900300 + 2.77084i 0.0349912 + 0.107692i
\(663\) 0 0
\(664\) 10.3947 7.55217i 0.403391 0.293081i
\(665\) 0.0583807 + 0.0189690i 0.00226391 + 0.000735588i
\(666\) 0 0
\(667\) 22.3653 + 30.7832i 0.865988 + 1.19193i
\(668\) 9.39575 + 6.82641i 0.363533 + 0.264122i
\(669\) 0 0
\(670\) 0.219358i 0.00847453i
\(671\) −28.1258 + 0.889320i −1.08579 + 0.0343318i
\(672\) 0 0
\(673\) 39.5629 12.8548i 1.52504 0.495514i 0.577835 0.816153i \(-0.303898\pi\)
0.947201 + 0.320639i \(0.103898\pi\)
\(674\) 1.07711 1.48252i 0.0414888 0.0571045i
\(675\) 0 0
\(676\) −3.63303 + 11.1813i −0.139732 + 0.430051i
\(677\) 1.39693 4.29931i 0.0536884 0.165236i −0.920617 0.390467i \(-0.872314\pi\)
0.974305 + 0.225231i \(0.0723137\pi\)
\(678\) 0 0
\(679\) 0.439379 0.604753i 0.0168618 0.0232083i
\(680\) −0.395904 + 0.128637i −0.0151822 + 0.00493301i
\(681\) 0 0
\(682\) 6.15389 9.05894i 0.235645 0.346885i
\(683\) 34.7783i 1.33075i 0.746507 + 0.665377i \(0.231729\pi\)
−0.746507 + 0.665377i \(0.768271\pi\)
\(684\) 0 0
\(685\) −0.521547 0.378926i −0.0199273 0.0144780i
\(686\) 1.39205 + 1.91599i 0.0531487 + 0.0731528i
\(687\) 0 0
\(688\) 1.35594 + 0.440573i 0.0516949 + 0.0167967i
\(689\) −16.6977 + 12.1316i −0.636132 + 0.462177i
\(690\) 0 0
\(691\) −5.52630 17.0082i −0.210230 0.647023i −0.999458 0.0329217i \(-0.989519\pi\)
0.789228 0.614101i \(-0.210481\pi\)
\(692\) −25.3670 −0.964308
\(693\) 0 0
\(694\) 11.4278 0.433794
\(695\) −0.0478085 0.147139i −0.00181348 0.00558132i
\(696\) 0 0
\(697\) 33.2216 24.1369i 1.25836 0.914250i
\(698\) −9.01701 2.92980i −0.341299 0.110895i
\(699\) 0 0
\(700\) −1.10689 1.52351i −0.0418367 0.0575832i
\(701\) 14.1345 + 10.2693i 0.533852 + 0.387866i 0.821797 0.569781i \(-0.192972\pi\)
−0.287945 + 0.957647i \(0.592972\pi\)
\(702\) 0 0
\(703\) 24.9914i 0.942568i
\(704\) −2.50472 3.22778i −0.0944001 0.121651i
\(705\) 0 0
\(706\) −7.21693 + 2.34492i −0.271613 + 0.0882523i
\(707\) −1.00869 + 1.38834i −0.0379356 + 0.0522139i
\(708\) 0 0
\(709\) 2.57673 7.93037i 0.0967713 0.297831i −0.890940 0.454121i \(-0.849953\pi\)
0.987711 + 0.156290i \(0.0499533\pi\)
\(710\) −0.0283950 + 0.0873909i −0.00106565 + 0.00327972i
\(711\) 0 0
\(712\) 12.1893 16.7771i 0.456812 0.628747i
\(713\) 31.0248 10.0806i 1.16189 0.377520i
\(714\) 0 0
\(715\) −0.288041 + 0.103764i −0.0107721 + 0.00388056i
\(716\) 10.7598i 0.402112i
\(717\) 0 0
\(718\) 10.5879 + 7.69254i 0.395136 + 0.287083i
\(719\) 13.8736 + 19.0953i 0.517397 + 0.712136i 0.985145 0.171726i \(-0.0549344\pi\)
−0.467748 + 0.883862i \(0.654934\pi\)
\(720\) 0 0
\(721\) −3.08000 1.00075i −0.114705 0.0372699i
\(722\) 10.8252 7.86497i 0.402872 0.292704i
\(723\) 0 0
\(724\) 9.96272 + 30.6621i 0.370262 + 1.13955i
\(725\) 27.9697 1.03877
\(726\) 0 0
\(727\) 1.90462 0.0706386 0.0353193 0.999376i \(-0.488755\pi\)
0.0353193 + 0.999376i \(0.488755\pi\)
\(728\) −0.426102 1.31141i −0.0157924 0.0486039i
\(729\) 0 0
\(730\) −0.264742 + 0.192346i −0.00979854 + 0.00711905i
\(731\) 4.19569 + 1.36326i 0.155183 + 0.0504221i
\(732\) 0 0
\(733\) −10.3520 14.2482i −0.382358 0.526271i 0.573849 0.818961i \(-0.305450\pi\)
−0.956207 + 0.292690i \(0.905450\pi\)
\(734\) 3.17241 + 2.30489i 0.117096 + 0.0850751i
\(735\) 0 0
\(736\) 39.4756i 1.45509i
\(737\) −24.7938 + 8.93171i −0.913291 + 0.329004i
\(738\) 0 0
\(739\) −4.54355 + 1.47629i −0.167137 + 0.0543062i −0.391390 0.920225i \(-0.628006\pi\)
0.224253 + 0.974531i \(0.428006\pi\)
\(740\) −0.145038 + 0.199627i −0.00533169 + 0.00733845i
\(741\) 0 0
\(742\) −0.470834 + 1.44908i −0.0172849 + 0.0531974i
\(743\) −0.567901 + 1.74782i −0.0208343 + 0.0641212i −0.960933 0.276781i \(-0.910732\pi\)
0.940099 + 0.340902i \(0.110732\pi\)
\(744\) 0 0
\(745\) 0.242118 0.333247i 0.00887053 0.0122092i
\(746\) −14.5056 + 4.71316i −0.531088 + 0.172561i
\(747\) 0 0
\(748\) 13.2704 + 17.1013i 0.485215 + 0.625287i
\(749\) 0.337805i 0.0123431i
\(750\) 0 0
\(751\) 30.6978 + 22.3033i 1.12018 + 0.813857i 0.984236 0.176859i \(-0.0565938\pi\)
0.135942 + 0.990717i \(0.456594\pi\)
\(752\) 9.03781 + 12.4395i 0.329575 + 0.453621i
\(753\) 0 0
\(754\) 8.43046 + 2.73922i 0.307019 + 0.0997566i
\(755\) −0.284588 + 0.206765i −0.0103572 + 0.00752497i
\(756\) 0 0
\(757\) −9.46409 29.1275i −0.343978 1.05866i −0.962128 0.272596i \(-0.912118\pi\)
0.618150 0.786060i \(-0.287882\pi\)
\(758\) −0.262481 −0.00953373
\(759\) 0 0
\(760\) 0.603558 0.0218934
\(761\) 9.53788 + 29.3546i 0.345748 + 1.06410i 0.961182 + 0.275914i \(0.0889806\pi\)
−0.615434 + 0.788188i \(0.711019\pi\)
\(762\) 0 0
\(763\) 1.46674 1.06565i 0.0530994 0.0385790i
\(764\) 19.8402 + 6.44648i 0.717794 + 0.233225i
\(765\) 0 0
\(766\) 5.12362 + 7.05205i 0.185124 + 0.254801i
\(767\) −5.19177 3.77204i −0.187464 0.136200i
\(768\) 0 0
\(769\) 19.3154i 0.696532i −0.937396 0.348266i \(-0.886771\pi\)
0.937396 0.348266i \(-0.113229\pi\)
\(770\) −0.0127003 + 0.0186957i −0.000457688 + 0.000673747i
\(771\) 0 0
\(772\) −36.3395 + 11.8074i −1.30789 + 0.424958i
\(773\) 1.72928 2.38015i 0.0621980 0.0856082i −0.776785 0.629766i \(-0.783151\pi\)
0.838983 + 0.544158i \(0.183151\pi\)
\(774\) 0 0
\(775\) 7.40997 22.8056i 0.266174 0.819200i
\(776\) 2.27122 6.99009i 0.0815320 0.250930i
\(777\) 0 0
\(778\) 9.62814 13.2520i 0.345185 0.475107i
\(779\) −56.6245 + 18.3984i −2.02878 + 0.659191i
\(780\) 0 0
\(781\) 11.0339 0.348884i 0.394823 0.0124840i
\(782\) 20.0138i 0.715693i
\(783\) 0 0
\(784\) −7.75811 5.63660i −0.277075 0.201307i
\(785\) −0.307206 0.422833i −0.0109647 0.0150916i
\(786\) 0 0
\(787\) −7.65190 2.48625i −0.272761 0.0886254i 0.169443 0.985540i \(-0.445803\pi\)
−0.442204 + 0.896915i \(0.645803\pi\)
\(788\) −25.9847 + 18.8790i −0.925665 + 0.672535i
\(789\) 0 0
\(790\) 0.0256865 + 0.0790549i 0.000913884 + 0.00281265i
\(791\) −0.130470 −0.00463897
\(792\) 0 0
\(793\) −19.5272 −0.693433
\(794\) 1.06452 + 3.27627i 0.0377786 + 0.116270i
\(795\) 0 0
\(796\) −12.8057 + 9.30388i −0.453886 + 0.329767i
\(797\) 52.2338 + 16.9718i 1.85022 + 0.601172i 0.996799 + 0.0799446i \(0.0254743\pi\)
0.853418 + 0.521227i \(0.174526\pi\)
\(798\) 0 0
\(799\) 27.9657 + 38.4914i 0.989354 + 1.36173i
\(800\) −23.4757 17.0561i −0.829991 0.603024i
\(801\) 0 0
\(802\) 2.92121i 0.103152i
\(803\) 32.5203 + 22.0916i 1.14762 + 0.779596i
\(804\) 0 0
\(805\) −0.0640286 + 0.0208041i −0.00225671 + 0.000733250i
\(806\) 4.46694 6.14821i 0.157341 0.216562i
\(807\) 0 0
\(808\) −5.21407 + 16.0472i −0.183430 + 0.564540i
\(809\) −7.52538 + 23.1607i −0.264578 + 0.814288i 0.727212 + 0.686413i \(0.240816\pi\)
−0.991790 + 0.127875i \(0.959184\pi\)
\(810\) 0 0
\(811\) −12.2026 + 16.7955i −0.428493 + 0.589770i −0.967607 0.252463i \(-0.918759\pi\)
0.539114 + 0.842233i \(0.318759\pi\)
\(812\) −2.00503 + 0.651474i −0.0703628 + 0.0228623i
\(813\) 0 0
\(814\) −8.83676 2.56547i −0.309728 0.0899196i
\(815\) 0.368107i 0.0128942i
\(816\) 0 0
\(817\) −5.17476 3.75968i −0.181042 0.131535i
\(818\) −4.77615 6.57380i −0.166994 0.229848i
\(819\) 0 0
\(820\) −0.559083 0.181657i −0.0195240 0.00634374i
\(821\) 23.1681 16.8326i 0.808571 0.587461i −0.104845 0.994489i \(-0.533435\pi\)
0.913416 + 0.407027i \(0.133435\pi\)
\(822\) 0 0
\(823\) 0.768785 + 2.36608i 0.0267982 + 0.0824763i 0.963561 0.267488i \(-0.0861936\pi\)
−0.936763 + 0.349964i \(0.886194\pi\)
\(824\) −31.8420 −1.10927
\(825\) 0 0
\(826\) −0.473745 −0.0164837
\(827\) 7.36490 + 22.6668i 0.256103 + 0.788202i 0.993610 + 0.112864i \(0.0360024\pi\)
−0.737508 + 0.675338i \(0.763998\pi\)
\(828\) 0 0
\(829\) 32.8736 23.8841i 1.14175 0.829528i 0.154386 0.988011i \(-0.450660\pi\)
0.987362 + 0.158482i \(0.0506601\pi\)
\(830\) −0.138990 0.0451607i −0.00482443 0.00156755i
\(831\) 0 0
\(832\) −1.66646 2.29368i −0.0577740 0.0795190i
\(833\) −24.0059 17.4413i −0.831755 0.604305i
\(834\) 0 0
\(835\) 0.305201i 0.0105619i
\(836\) −10.6369 29.5272i −0.367884 1.02122i
\(837\) 0 0
\(838\) 13.7333 4.46221i 0.474408 0.154145i
\(839\) 33.6349 46.2945i 1.16121 1.59826i 0.454525 0.890734i \(-0.349809\pi\)
0.706683 0.707531i \(-0.250191\pi\)
\(840\) 0 0
\(841\) 0.714546 2.19915i 0.0246395 0.0758327i
\(842\) −0.591241 + 1.81965i −0.0203755 + 0.0627094i
\(843\) 0 0
\(844\) −16.8151 + 23.1440i −0.578799 + 0.796649i
\(845\) 0.293836 0.0954731i 0.0101083 0.00328438i
\(846\) 0 0
\(847\) 2.63028 + 0.674260i 0.0903776 + 0.0231679i
\(848\) 12.3931i 0.425582i
\(849\) 0 0
\(850\) −11.9020 8.64729i −0.408234 0.296600i
\(851\) −16.1107 22.1744i −0.552266 0.760130i
\(852\) 0 0
\(853\) −29.0464 9.43774i −0.994529 0.323142i −0.233852 0.972272i \(-0.575133\pi\)
−0.760677 + 0.649130i \(0.775133\pi\)
\(854\) −1.16623 + 0.847318i −0.0399077 + 0.0289946i
\(855\) 0 0
\(856\) 1.02637 + 3.15885i 0.0350807 + 0.107967i
\(857\) 6.14781 0.210005 0.105003 0.994472i \(-0.466515\pi\)
0.105003 + 0.994472i \(0.466515\pi\)
\(858\) 0 0
\(859\) −27.5988 −0.941660 −0.470830 0.882224i \(-0.656045\pi\)
−0.470830 + 0.882224i \(0.656045\pi\)
\(860\) −0.0195158 0.0600635i −0.000665484 0.00204815i
\(861\) 0 0
\(862\) −15.5521 + 11.2993i −0.529706 + 0.384854i
\(863\) −40.7061 13.2262i −1.38565 0.450226i −0.481129 0.876650i \(-0.659773\pi\)
−0.904523 + 0.426424i \(0.859773\pi\)
\(864\) 0 0
\(865\) 0.391832 + 0.539310i 0.0133227 + 0.0183371i
\(866\) 5.10515 + 3.70911i 0.173480 + 0.126041i
\(867\) 0 0
\(868\) 1.80743i 0.0613481i
\(869\) 7.88960 6.12224i 0.267636 0.207683i
\(870\) 0 0
\(871\) −17.3926 + 5.65118i −0.589324 + 0.191483i
\(872\) 10.4778 14.4214i 0.354822 0.488371i
\(873\) 0 0
\(874\) −8.96700 + 27.5976i −0.303313 + 0.933503i
\(875\) −0.0305901 + 0.0941467i −0.00103414 + 0.00318274i
\(876\) 0 0
\(877\) 6.60112 9.08566i 0.222904 0.306801i −0.682889 0.730523i \(-0.739277\pi\)
0.905792 + 0.423722i \(0.139277\pi\)
\(878\) 1.91872 0.623429i 0.0647536 0.0210397i
\(879\) 0 0
\(880\) 0.0512548 0.176547i 0.00172780 0.00595141i
\(881\) 47.3136i 1.59403i 0.603957 + 0.797017i \(0.293590\pi\)
−0.603957 + 0.797017i \(0.706410\pi\)
\(882\) 0 0
\(883\) −14.7740 10.7340i −0.497186 0.361227i 0.310755 0.950490i \(-0.399418\pi\)
−0.807941 + 0.589263i \(0.799418\pi\)
\(884\) 8.82917 + 12.1523i 0.296957 + 0.408727i
\(885\) 0 0
\(886\) −23.4619 7.62324i −0.788218 0.256108i
\(887\) 32.9354 23.9289i 1.10586 0.803455i 0.123854 0.992300i \(-0.460474\pi\)
0.982007 + 0.188845i \(0.0604744\pi\)
\(888\) 0 0
\(889\) 0.974242 + 2.99841i 0.0326750 + 0.100563i
\(890\) −0.235876 −0.00790658
\(891\) 0 0
\(892\) −14.7573 −0.494110
\(893\) −21.3169 65.6066i −0.713342 2.19544i
\(894\) 0 0
\(895\) −0.228756 + 0.166201i −0.00764648 + 0.00555549i
\(896\) 2.52676 + 0.820995i 0.0844132 + 0.0274275i
\(897\) 0 0
\(898\) 5.75057 + 7.91498i 0.191899 + 0.264126i
\(899\) −21.7180 15.7790i −0.724335 0.526260i
\(900\) 0 0
\(901\) 38.3480i 1.27756i
\(902\) −0.692800 21.9106i −0.0230677 0.729545i
\(903\) 0 0
\(904\) −1.22003 + 0.396413i −0.0405777 + 0.0131845i
\(905\) 0.497996 0.685433i 0.0165540 0.0227846i
\(906\) 0 0
\(907\) 0.365168 1.12387i 0.0121252 0.0373176i −0.944811 0.327616i \(-0.893755\pi\)
0.956936 + 0.290299i \(0.0937547\pi\)
\(908\) 5.52581 17.0067i 0.183380 0.564387i
\(909\) 0 0
\(910\) −0.00921881 + 0.0126886i −0.000305601 + 0.000420623i
\(911\) −20.1283 + 6.54007i −0.666879 + 0.216682i −0.622842 0.782348i \(-0.714022\pi\)
−0.0440370 + 0.999030i \(0.514022\pi\)
\(912\) 0 0
\(913\) 0.554880 + 17.5488i 0.0183639 + 0.580779i
\(914\) 14.0406i 0.464423i
\(915\) 0 0
\(916\) 25.2882 + 18.3730i 0.835547 + 0.607060i
\(917\) −2.63394 3.62530i −0.0869803 0.119718i
\(918\) 0 0
\(919\) −13.4009 4.35422i −0.442055 0.143633i 0.0795283 0.996833i \(-0.474659\pi\)
−0.521584 + 0.853200i \(0.674659\pi\)
\(920\) −0.535527 + 0.389083i −0.0176558 + 0.0128277i
\(921\) 0 0
\(922\) 0.163849 + 0.504277i 0.00539610 + 0.0166075i
\(923\) 7.66061 0.252152
\(924\) 0 0
\(925\) −20.1477 −0.662454
\(926\) 8.03871 + 24.7406i 0.264168 + 0.813027i
\(927\) 0 0
\(928\) −26.2812 + 19.0944i −0.862723 + 0.626805i
\(929\) 32.4174 + 10.5331i 1.06358 + 0.345578i 0.787985 0.615695i \(-0.211125\pi\)
0.275596 + 0.961273i \(0.411125\pi\)
\(930\) 0 0
\(931\) 25.2880 + 34.8059i 0.828780 + 1.14072i
\(932\) −19.9327 14.4819i −0.652916 0.474371i
\(933\) 0 0
\(934\) 12.1157i 0.396438i
\(935\) 0.158598 0.546290i 0.00518669 0.0178656i
\(936\) 0 0
\(937\) 6.41974 2.08590i 0.209724 0.0681434i −0.202271 0.979330i \(-0.564832\pi\)
0.411995 + 0.911186i \(0.364832\pi\)
\(938\) −0.793529 + 1.09220i −0.0259096 + 0.0356616i
\(939\) 0 0
\(940\) 0.210473 0.647768i 0.00686486 0.0211279i
\(941\) −10.2896 + 31.6682i −0.335432 + 1.03235i 0.631077 + 0.775720i \(0.282613\pi\)
−0.966509 + 0.256633i \(0.917387\pi\)
\(942\) 0 0
\(943\) 38.3814 52.8275i 1.24987 1.72030i
\(944\) 3.66476 1.19075i 0.119278 0.0387557i
\(945\) 0 0
\(946\) 1.86060 1.44381i 0.0604934 0.0469422i
\(947\) 0.751232i 0.0244117i 0.999926 + 0.0122059i \(0.00388535\pi\)
−0.999926 + 0.0122059i \(0.996115\pi\)
\(948\) 0 0
\(949\) 22.0712 + 16.0357i 0.716462 + 0.520540i
\(950\) 12.5376 + 17.2566i 0.406774 + 0.559877i
\(951\) 0 0
\(952\) 2.43658 + 0.791694i 0.0789701 + 0.0256589i
\(953\) 3.76491 2.73537i 0.121957 0.0886073i −0.525134 0.851019i \(-0.675985\pi\)
0.647092 + 0.762412i \(0.275985\pi\)
\(954\) 0 0
\(955\) −0.169408 0.521385i −0.00548192 0.0168716i
\(956\) −43.3266 −1.40128
\(957\) 0 0
\(958\) −1.65593 −0.0535007
\(959\) 1.22605 + 3.77340i 0.0395913 + 0.121849i
\(960\) 0 0
\(961\) 6.46012 4.69355i 0.208391 0.151405i
\(962\) −6.07281 1.97318i −0.195795 0.0636177i
\(963\) 0 0
\(964\) −12.8874 17.7379i −0.415074 0.571300i
\(965\) 0.812348 + 0.590205i 0.0261504 + 0.0189994i
\(966\) 0 0
\(967\) 21.7529i 0.699525i 0.936838 + 0.349763i \(0.113738\pi\)
−0.936838 + 0.349763i \(0.886262\pi\)
\(968\) 26.6447 1.68666i 0.856392 0.0542113i
\(969\) 0 0
\(970\) −0.0795075 + 0.0258336i −0.00255283 + 0.000829465i
\(971\) −3.45215 + 4.75147i −0.110785 + 0.152482i −0.860809 0.508928i \(-0.830042\pi\)
0.750024 + 0.661410i \(0.230042\pi\)
\(972\) 0 0
\(973\) −0.294236 + 0.905565i −0.00943277 + 0.0290311i
\(974\) 3.10487 9.55579i 0.0994863 0.306187i
\(975\) 0 0
\(976\) 6.89195 9.48595i 0.220606 0.303638i
\(977\) 0.874965 0.284293i 0.0279926 0.00909535i −0.294987 0.955501i \(-0.595315\pi\)
0.322980 + 0.946406i \(0.395315\pi\)
\(978\) 0 0
\(979\) 9.60429 + 26.6608i 0.306954 + 0.852083i
\(980\) 0.424783i 0.0135692i
\(981\) 0 0
\(982\) 13.9446 + 10.1313i 0.444989 + 0.323304i
\(983\) 27.4119 + 37.7293i 0.874304 + 1.20338i 0.977966 + 0.208764i \(0.0669440\pi\)
−0.103662 + 0.994613i \(0.533056\pi\)
\(984\) 0 0
\(985\) 0.802745 + 0.260828i 0.0255776 + 0.00831066i
\(986\) −13.3244 + 9.68072i −0.424334 + 0.308297i
\(987\) 0 0
\(988\) −6.73006 20.7130i −0.214112 0.658968i
\(989\) 7.01515 0.223069
\(990\) 0 0
\(991\) 6.21090 0.197296 0.0986478 0.995122i \(-0.468548\pi\)
0.0986478 + 0.995122i \(0.468548\pi\)
\(992\) 8.60631 + 26.4875i 0.273250 + 0.840978i
\(993\) 0 0
\(994\) 0.457518 0.332406i 0.0145116 0.0105433i
\(995\) 0.395607 + 0.128540i 0.0125416 + 0.00407500i
\(996\) 0 0
\(997\) −16.7911 23.1110i −0.531781 0.731933i 0.455620 0.890174i \(-0.349418\pi\)
−0.987400 + 0.158241i \(0.949418\pi\)
\(998\) −12.6467 9.18836i −0.400324 0.290852i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.j.a.17.3 yes 16
3.2 odd 2 inner 99.2.j.a.17.2 16
4.3 odd 2 1584.2.cd.c.17.2 16
9.2 odd 6 891.2.u.c.215.2 32
9.4 even 3 891.2.u.c.512.2 32
9.5 odd 6 891.2.u.c.512.3 32
9.7 even 3 891.2.u.c.215.3 32
11.2 odd 10 inner 99.2.j.a.35.2 yes 16
11.3 even 5 1089.2.d.g.1088.11 16
11.8 odd 10 1089.2.d.g.1088.5 16
12.11 even 2 1584.2.cd.c.17.3 16
33.2 even 10 inner 99.2.j.a.35.3 yes 16
33.8 even 10 1089.2.d.g.1088.12 16
33.14 odd 10 1089.2.d.g.1088.6 16
44.35 even 10 1584.2.cd.c.1025.3 16
99.2 even 30 891.2.u.c.134.2 32
99.13 odd 30 891.2.u.c.431.2 32
99.68 even 30 891.2.u.c.431.3 32
99.79 odd 30 891.2.u.c.134.3 32
132.35 odd 10 1584.2.cd.c.1025.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.17.2 16 3.2 odd 2 inner
99.2.j.a.17.3 yes 16 1.1 even 1 trivial
99.2.j.a.35.2 yes 16 11.2 odd 10 inner
99.2.j.a.35.3 yes 16 33.2 even 10 inner
891.2.u.c.134.2 32 99.2 even 30
891.2.u.c.134.3 32 99.79 odd 30
891.2.u.c.215.2 32 9.2 odd 6
891.2.u.c.215.3 32 9.7 even 3
891.2.u.c.431.2 32 99.13 odd 30
891.2.u.c.431.3 32 99.68 even 30
891.2.u.c.512.2 32 9.4 even 3
891.2.u.c.512.3 32 9.5 odd 6
1089.2.d.g.1088.5 16 11.8 odd 10
1089.2.d.g.1088.6 16 33.14 odd 10
1089.2.d.g.1088.11 16 11.3 even 5
1089.2.d.g.1088.12 16 33.8 even 10
1584.2.cd.c.17.2 16 4.3 odd 2
1584.2.cd.c.17.3 16 12.11 even 2
1584.2.cd.c.1025.2 16 132.35 odd 10
1584.2.cd.c.1025.3 16 44.35 even 10