Properties

Label 1089.2.d.g.1088.12
Level 10891089
Weight 22
Character 1089.1088
Analytic conductor 8.6968.696
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1089,2,Mod(1088,1089)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1089, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1089.1088"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1089.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,16,0,0,0,0,0,0,0,0,0,0,0,40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.695708780128.69570878012
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16+2x1416x1272x10+26x8+360x6+725x4+1000x2+625 x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 28 2^{8}
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1088.12
Root 1.901840.0324487i-1.90184 - 0.0324487i of defining polynomial
Character χ\chi == 1089.1088
Dual form 1089.2.d.g.1088.11

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.688291q21.52626q4+0.0401087iq5+0.246848iq72.42709q8+0.0276065iq102.30152iq13+0.169903iq14+1.38197q16+4.27621q17+6.20004iq190.0612162iq20+6.79984iq23+4.99839q251.58412iq260.376753iq28+5.59574q29+4.79738q31+5.80538q32+2.94328q340.00990077q354.03084q37+4.26743iq380.0973475iq409.60293q411.03166iq43+4.68027iq46+11.1262iq47+6.93907q49+3.44035q50+3.51271iq52+8.96776iq530.599123iq56+3.85150q58+2.78832iq598.48450iq61+3.30199q62+1.23186q64+0.0923111q65+7.94588q676.52659q680.00681461q70+3.32850iq7111.8537iq732.77439q749.46284iq763.01100iq79+0.0554289iq806.60961q82+5.29380q83+0.171513iq850.710085iq86+8.54422iq89+0.568126q9110.3783iq92+7.65807iq940.248676q953.02824q97+4.77610q98+O(q100)q+0.688291 q^{2} -1.52626 q^{4} +0.0401087i q^{5} +0.246848i q^{7} -2.42709 q^{8} +0.0276065i q^{10} -2.30152i q^{13} +0.169903i q^{14} +1.38197 q^{16} +4.27621 q^{17} +6.20004i q^{19} -0.0612162i q^{20} +6.79984i q^{23} +4.99839 q^{25} -1.58412i q^{26} -0.376753i q^{28} +5.59574 q^{29} +4.79738 q^{31} +5.80538 q^{32} +2.94328 q^{34} -0.00990077 q^{35} -4.03084 q^{37} +4.26743i q^{38} -0.0973475i q^{40} -9.60293 q^{41} -1.03166i q^{43} +4.68027i q^{46} +11.1262i q^{47} +6.93907 q^{49} +3.44035 q^{50} +3.51271i q^{52} +8.96776i q^{53} -0.599123i q^{56} +3.85150 q^{58} +2.78832i q^{59} -8.48450i q^{61} +3.30199 q^{62} +1.23186 q^{64} +0.0923111 q^{65} +7.94588 q^{67} -6.52659 q^{68} -0.00681461 q^{70} +3.32850i q^{71} -11.8537i q^{73} -2.77439 q^{74} -9.46284i q^{76} -3.01100i q^{79} +0.0554289i q^{80} -6.60961 q^{82} +5.29380 q^{83} +0.171513i q^{85} -0.710085i q^{86} +8.54422i q^{89} +0.568126 q^{91} -10.3783i q^{92} +7.65807i q^{94} -0.248676 q^{95} -3.02824 q^{97} +4.77610 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+16q4+40q1632q25+16q31+40q34+8q37+16q49+32q58104q64+96q6764q70+88q82+48q91+O(q100) 16 q + 16 q^{4} + 40 q^{16} - 32 q^{25} + 16 q^{31} + 40 q^{34} + 8 q^{37} + 16 q^{49} + 32 q^{58} - 104 q^{64} + 96 q^{67} - 64 q^{70} + 88 q^{82} + 48 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1089Z)×\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times.

nn 244244 848848
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.688291 0.486695 0.243348 0.969939i 0.421754π-0.421754\pi
0.243348 + 0.969939i 0.421754π0.421754\pi
33 0 0
44 −1.52626 −0.763128
55 0.0401087i 0.0179372i 0.999960 + 0.00896859i 0.00285483π0.00285483\pi
−0.999960 + 0.00896859i 0.997145π0.997145\pi
66 0 0
77 0.246848i 0.0932998i 0.998911 + 0.0466499i 0.0148545π0.0148545\pi
−0.998911 + 0.0466499i 0.985145π0.985145\pi
88 −2.42709 −0.858106
99 0 0
1010 0.0276065i 0.00872994i
1111 0 0
1212 0 0
1313 − 2.30152i − 0.638327i −0.947700 0.319164i 0.896598π-0.896598\pi
0.947700 0.319164i 0.103402π-0.103402\pi
1414 0.169903i 0.0454086i
1515 0 0
1616 1.38197 0.345492
1717 4.27621 1.03713 0.518567 0.855037i 0.326466π-0.326466\pi
0.518567 + 0.855037i 0.326466π0.326466\pi
1818 0 0
1919 6.20004i 1.42239i 0.702997 + 0.711193i 0.251845π0.251845\pi
−0.702997 + 0.711193i 0.748155π0.748155\pi
2020 − 0.0612162i − 0.0136884i
2121 0 0
2222 0 0
2323 6.79984i 1.41786i 0.705277 + 0.708932i 0.250823π0.250823\pi
−0.705277 + 0.708932i 0.749177π0.749177\pi
2424 0 0
2525 4.99839 0.999678
2626 − 1.58412i − 0.310671i
2727 0 0
2828 − 0.376753i − 0.0711997i
2929 5.59574 1.03910 0.519552 0.854439i 0.326099π-0.326099\pi
0.519552 + 0.854439i 0.326099π0.326099\pi
3030 0 0
3131 4.79738 0.861635 0.430817 0.902439i 0.358225π-0.358225\pi
0.430817 + 0.902439i 0.358225π0.358225\pi
3232 5.80538 1.02626
3333 0 0
3434 2.94328 0.504768
3535 −0.00990077 −0.00167354
3636 0 0
3737 −4.03084 −0.662667 −0.331333 0.943514i 0.607498π-0.607498\pi
−0.331333 + 0.943514i 0.607498π0.607498\pi
3838 4.26743i 0.692268i
3939 0 0
4040 − 0.0973475i − 0.0153920i
4141 −9.60293 −1.49973 −0.749863 0.661593i 0.769881π-0.769881\pi
−0.749863 + 0.661593i 0.769881π0.769881\pi
4242 0 0
4343 − 1.03166i − 0.157327i −0.996901 0.0786636i 0.974935π-0.974935\pi
0.996901 0.0786636i 0.0250653π-0.0250653\pi
4444 0 0
4545 0 0
4646 4.68027i 0.690068i
4747 11.1262i 1.62292i 0.584405 + 0.811462i 0.301328π0.301328\pi
−0.584405 + 0.811462i 0.698672π0.698672\pi
4848 0 0
4949 6.93907 0.991295
5050 3.44035 0.486539
5151 0 0
5252 3.51271i 0.487125i
5353 8.96776i 1.23182i 0.787818 + 0.615908i 0.211211π0.211211\pi
−0.787818 + 0.615908i 0.788789π0.788789\pi
5454 0 0
5555 0 0
5656 − 0.599123i − 0.0800611i
5757 0 0
5858 3.85150 0.505727
5959 2.78832i 0.363008i 0.983390 + 0.181504i 0.0580966π0.0580966\pi
−0.983390 + 0.181504i 0.941903π0.941903\pi
6060 0 0
6161 − 8.48450i − 1.08633i −0.839627 0.543164i 0.817226π-0.817226\pi
0.839627 0.543164i 0.182774π-0.182774\pi
6262 3.30199 0.419354
6363 0 0
6464 1.23186 0.153982
6565 0.0923111 0.0114498
6666 0 0
6767 7.94588 0.970744 0.485372 0.874308i 0.338684π-0.338684\pi
0.485372 + 0.874308i 0.338684π0.338684\pi
6868 −6.52659 −0.791465
6969 0 0
7070 −0.00681461 −0.000814502 0
7171 3.32850i 0.395020i 0.980301 + 0.197510i 0.0632855π0.0632855\pi
−0.980301 + 0.197510i 0.936714π0.936714\pi
7272 0 0
7373 − 11.8537i − 1.38737i −0.720278 0.693685i 0.755986π-0.755986\pi
0.720278 0.693685i 0.244014π-0.244014\pi
7474 −2.77439 −0.322517
7575 0 0
7676 − 9.46284i − 1.08546i
7777 0 0
7878 0 0
7979 − 3.01100i − 0.338764i −0.985550 0.169382i 0.945823π-0.945823\pi
0.985550 0.169382i 0.0541772π-0.0541772\pi
8080 0.0554289i 0.00619714i
8181 0 0
8282 −6.60961 −0.729909
8383 5.29380 0.581070 0.290535 0.956864i 0.406167π-0.406167\pi
0.290535 + 0.956864i 0.406167π0.406167\pi
8484 0 0
8585 0.171513i 0.0186032i
8686 − 0.710085i − 0.0765704i
8787 0 0
8888 0 0
8989 8.54422i 0.905686i 0.891590 + 0.452843i 0.149590π0.149590\pi
−0.891590 + 0.452843i 0.850410π0.850410\pi
9090 0 0
9191 0.568126 0.0595558
9292 − 10.3783i − 1.08201i
9393 0 0
9494 7.65807i 0.789870i
9595 −0.248676 −0.0255136
9696 0 0
9797 −3.02824 −0.307471 −0.153736 0.988112i 0.549130π-0.549130\pi
−0.153736 + 0.988112i 0.549130π0.549130\pi
9898 4.77610 0.482459
9999 0 0
100100 −7.62882 −0.762882
101101 6.95198 0.691747 0.345874 0.938281i 0.387583π-0.387583\pi
0.345874 + 0.938281i 0.387583π0.387583\pi
102102 0 0
103103 13.1194 1.29269 0.646347 0.763044i 0.276296π-0.276296\pi
0.646347 + 0.763044i 0.276296π0.276296\pi
104104 5.58600i 0.547752i
105105 0 0
106106 6.17243i 0.599519i
107107 −1.36847 −0.132295 −0.0661476 0.997810i 0.521071π-0.521071\pi
−0.0661476 + 0.997810i 0.521071π0.521071\pi
108108 0 0
109109 7.34454i 0.703480i 0.936098 + 0.351740i 0.114410π0.114410\pi
−0.936098 + 0.351740i 0.885590π0.885590\pi
110110 0 0
111111 0 0
112112 0.341136i 0.0322343i
113113 0.528542i 0.0497211i 0.999691 + 0.0248605i 0.00791417π0.00791417\pi
−0.999691 + 0.0248605i 0.992086π0.992086\pi
114114 0 0
115115 −0.272733 −0.0254325
116116 −8.54053 −0.792968
117117 0 0
118118 1.91917i 0.176674i
119119 1.05557i 0.0967644i
120120 0 0
121121 0 0
122122 − 5.83980i − 0.528711i
123123 0 0
124124 −7.32203 −0.657537
125125 0.401023i 0.0358686i
126126 0 0
127127 − 12.7719i − 1.13332i −0.823952 0.566660i 0.808235π-0.808235\pi
0.823952 0.566660i 0.191765π-0.191765\pi
128128 −10.7629 −0.951313
129129 0 0
130130 0.0635369 0.00557256
131131 −18.1534 −1.58607 −0.793033 0.609178i 0.791499π-0.791499\pi
−0.793033 + 0.609178i 0.791499π0.791499\pi
132132 0 0
133133 −1.53047 −0.132708
134134 5.46908 0.472456
135135 0 0
136136 −10.3787 −0.889970
137137 − 16.0730i − 1.37321i −0.727032 0.686604i 0.759101π-0.759101\pi
0.727032 0.686604i 0.240899π-0.240899\pi
138138 0 0
139139 3.85730i 0.327172i 0.986529 + 0.163586i 0.0523061π0.0523061\pi
−0.986529 + 0.163586i 0.947694π0.947694\pi
140140 0.0151111 0.00127712
141141 0 0
142142 2.29098i 0.192255i
143143 0 0
144144 0 0
145145 0.224438i 0.0186386i
146146 − 8.15879i − 0.675227i
147147 0 0
148148 6.15210 0.505699
149149 −10.2700 −0.841350 −0.420675 0.907211i 0.638207π-0.638207\pi
−0.420675 + 0.907211i 0.638207π0.638207\pi
150150 0 0
151151 − 8.77042i − 0.713726i −0.934157 0.356863i 0.883846π-0.883846\pi
0.934157 0.356863i 0.116154π-0.116154\pi
152152 − 15.0480i − 1.22056i
153153 0 0
154154 0 0
155155 0.192417i 0.0154553i
156156 0 0
157157 −13.0308 −1.03997 −0.519987 0.854174i 0.674063π-0.674063\pi
−0.519987 + 0.854174i 0.674063π0.674063\pi
158158 − 2.07245i − 0.164875i
159159 0 0
160160 0.232846i 0.0184081i
161161 −1.67853 −0.132287
162162 0 0
163163 −9.17774 −0.718856 −0.359428 0.933173i 0.617028π-0.617028\pi
−0.359428 + 0.933173i 0.617028π0.617028\pi
164164 14.6565 1.14448
165165 0 0
166166 3.64367 0.282804
167167 7.60934 0.588828 0.294414 0.955678i 0.404876π-0.404876\pi
0.294414 + 0.955678i 0.404876π0.404876\pi
168168 0 0
169169 7.70300 0.592538
170170 0.118051i 0.00905411i
171171 0 0
172172 1.57458i 0.120061i
173173 16.6204 1.26363 0.631813 0.775121i 0.282311π-0.282311\pi
0.631813 + 0.775121i 0.282311π0.282311\pi
174174 0 0
175175 1.23384i 0.0932698i
176176 0 0
177177 0 0
178178 5.88091i 0.440793i
179179 − 7.04979i − 0.526926i −0.964669 0.263463i 0.915135π-0.915135\pi
0.964669 0.263463i 0.0848647π-0.0848647\pi
180180 0 0
181181 −21.1236 −1.57011 −0.785053 0.619429i 0.787364π-0.787364\pi
−0.785053 + 0.619429i 0.787364π0.787364\pi
182182 0.391036 0.0289855
183183 0 0
184184 − 16.5038i − 1.21668i
185185 − 0.161672i − 0.0118864i
186186 0 0
187187 0 0
188188 − 16.9814i − 1.23850i
189189 0 0
190190 −0.171161 −0.0124173
191191 13.6683i 0.989000i 0.869178 + 0.494500i 0.164649π0.164649\pi
−0.869178 + 0.494500i 0.835351π0.835351\pi
192192 0 0
193193 25.0349i 1.80205i 0.433767 + 0.901025i 0.357184π0.357184\pi
−0.433767 + 0.901025i 0.642816π0.642816\pi
194194 −2.08431 −0.149645
195195 0 0
196196 −10.5908 −0.756485
197197 −21.0442 −1.49934 −0.749668 0.661814i 0.769787π-0.769787\pi
−0.749668 + 0.661814i 0.769787π0.769787\pi
198198 0 0
199199 −10.3709 −0.735176 −0.367588 0.929989i 0.619816π-0.619816\pi
−0.367588 + 0.929989i 0.619816π0.619816\pi
200200 −12.1315 −0.857830
201201 0 0
202202 4.78498 0.336670
203203 1.38130i 0.0969481i
204204 0 0
205205 − 0.385161i − 0.0269008i
206206 9.02997 0.629148
207207 0 0
208208 − 3.18062i − 0.220537i
209209 0 0
210210 0 0
211211 − 18.7436i − 1.29036i −0.764029 0.645182i 0.776782π-0.776782\pi
0.764029 0.645182i 0.223218π-0.223218\pi
212212 − 13.6871i − 0.940033i
213213 0 0
214214 −0.941908 −0.0643875
215215 0.0413787 0.00282201
216216 0 0
217217 1.18422i 0.0803904i
218218 5.05518i 0.342380i
219219 0 0
220220 0 0
221221 − 9.84179i − 0.662031i
222222 0 0
223223 9.66894 0.647480 0.323740 0.946146i 0.395060π-0.395060\pi
0.323740 + 0.946146i 0.395060π0.395060\pi
224224 1.43305i 0.0957494i
225225 0 0
226226 0.363791i 0.0241990i
227227 −11.7162 −0.777630 −0.388815 0.921316i 0.627116π-0.627116\pi
−0.388815 + 0.921316i 0.627116π0.627116\pi
228228 0 0
229229 20.4802 1.35337 0.676684 0.736274i 0.263416π-0.263416\pi
0.676684 + 0.736274i 0.263416π0.263416\pi
230230 −0.187720 −0.0123779
231231 0 0
232232 −13.5814 −0.891661
233233 −16.1429 −1.05755 −0.528777 0.848761i 0.677349π-0.677349\pi
−0.528777 + 0.848761i 0.677349π0.677349\pi
234234 0 0
235235 −0.446258 −0.0291107
236236 − 4.25569i − 0.277022i
237237 0 0
238238 0.726543i 0.0470948i
239239 28.3875 1.83624 0.918118 0.396306i 0.129708π-0.129708\pi
0.918118 + 0.396306i 0.129708π0.129708\pi
240240 0 0
241241 14.3654i 0.925357i 0.886526 + 0.462679i 0.153112π0.153112\pi
−0.886526 + 0.462679i 0.846888π0.846888\pi
242242 0 0
243243 0 0
244244 12.9495i 0.829007i
245245 0.278317i 0.0177810i
246246 0 0
247247 14.2695 0.907948
248248 −11.6437 −0.739374
249249 0 0
250250 0.276021i 0.0174571i
251251 − 6.94278i − 0.438225i −0.975700 0.219112i 0.929684π-0.929684\pi
0.975700 0.219112i 0.0703161π-0.0703161\pi
252252 0 0
253253 0 0
254254 − 8.79077i − 0.551582i
255255 0 0
256256 −9.87170 −0.616981
257257 10.4183i 0.649875i 0.945735 + 0.324938i 0.105343π0.105343\pi
−0.945735 + 0.324938i 0.894657π0.894657\pi
258258 0 0
259259 − 0.995006i − 0.0618267i
260260 −0.140890 −0.00873765
261261 0 0
262262 −12.4948 −0.771931
263263 4.26110 0.262751 0.131375 0.991333i 0.458061π-0.458061\pi
0.131375 + 0.991333i 0.458061π0.458061\pi
264264 0 0
265265 −0.359686 −0.0220953
266266 −1.05341 −0.0645885
267267 0 0
268268 −12.1274 −0.740801
269269 − 11.0638i − 0.674569i −0.941403 0.337285i 0.890492π-0.890492\pi
0.941403 0.337285i 0.109508π-0.109508\pi
270270 0 0
271271 15.8957i 0.965596i 0.875732 + 0.482798i 0.160379π0.160379\pi
−0.875732 + 0.482798i 0.839621π0.839621\pi
272272 5.90958 0.358321
273273 0 0
274274 − 11.0629i − 0.668334i
275275 0 0
276276 0 0
277277 11.3410i 0.681417i 0.940169 + 0.340709i 0.110667π0.110667\pi
−0.940169 + 0.340709i 0.889333π0.889333\pi
278278 2.65495i 0.159233i
279279 0 0
280280 0.0240301 0.00143607
281281 −1.56030 −0.0930794 −0.0465397 0.998916i 0.514819π-0.514819\pi
−0.0465397 + 0.998916i 0.514819π0.514819\pi
282282 0 0
283283 − 26.5654i − 1.57915i −0.613653 0.789576i 0.710301π-0.710301\pi
0.613653 0.789576i 0.289699π-0.289699\pi
284284 − 5.08014i − 0.301451i
285285 0 0
286286 0 0
287287 − 2.37046i − 0.139924i
288288 0 0
289289 1.28598 0.0756456
290290 0.154479i 0.00907131i
291291 0 0
292292 18.0918i 1.05874i
293293 26.3345 1.53848 0.769240 0.638960i 0.220635π-0.220635\pi
0.769240 + 0.638960i 0.220635π0.220635\pi
294294 0 0
295295 −0.111836 −0.00651134
296296 9.78322 0.568638
297297 0 0
298298 −7.06874 −0.409481
299299 15.6500 0.905062
300300 0 0
301301 0.254664 0.0146786
302302 − 6.03660i − 0.347367i
303303 0 0
304304 8.56824i 0.491422i
305305 0.340302 0.0194857
306306 0 0
307307 26.0083i 1.48437i 0.670195 + 0.742185i 0.266211π0.266211\pi
−0.670195 + 0.742185i 0.733789π0.733789\pi
308308 0 0
309309 0 0
310310 0.132439i 0.00752202i
311311 − 13.3248i − 0.755578i −0.925892 0.377789i 0.876684π-0.876684\pi
0.925892 0.377789i 0.123316π-0.123316\pi
312312 0 0
313313 −11.2483 −0.635792 −0.317896 0.948126i 0.602976π-0.602976\pi
−0.317896 + 0.948126i 0.602976π0.602976\pi
314314 −8.96901 −0.506151
315315 0 0
316316 4.59556i 0.258520i
317317 − 10.9526i − 0.615161i −0.951522 0.307580i 0.900481π-0.900481\pi
0.951522 0.307580i 0.0995193π-0.0995193\pi
318318 0 0
319319 0 0
320320 0.0494082i 0.00276200i
321321 0 0
322322 −1.15532 −0.0643832
323323 26.5127i 1.47520i
324324 0 0
325325 − 11.5039i − 0.638122i
326326 −6.31695 −0.349864
327327 0 0
328328 23.3072 1.28692
329329 −2.74648 −0.151419
330330 0 0
331331 4.23285 0.232659 0.116329 0.993211i 0.462887π-0.462887\pi
0.116329 + 0.993211i 0.462887π0.462887\pi
332332 −8.07968 −0.443430
333333 0 0
334334 5.23744 0.286580
335335 0.318699i 0.0174124i
336336 0 0
337337 − 2.66238i − 0.145029i −0.997367 0.0725146i 0.976898π-0.976898\pi
0.997367 0.0725146i 0.0231024π-0.0231024\pi
338338 5.30191 0.288386
339339 0 0
340340 − 0.261773i − 0.0141966i
341341 0 0
342342 0 0
343343 3.44083i 0.185787i
344344 2.50394i 0.135003i
345345 0 0
346346 11.4397 0.615001
347347 16.6032 0.891304 0.445652 0.895206i 0.352972π-0.352972\pi
0.445652 + 0.895206i 0.352972π0.352972\pi
348348 0 0
349349 13.7748i 0.737346i 0.929559 + 0.368673i 0.120188π0.120188\pi
−0.929559 + 0.368673i 0.879812π0.879812\pi
350350 0.849243i 0.0453940i
351351 0 0
352352 0 0
353353 − 11.0249i − 0.586795i −0.955990 0.293398i 0.905214π-0.905214\pi
0.955990 0.293398i 0.0947860π-0.0947860\pi
354354 0 0
355355 −0.133502 −0.00708555
356356 − 13.0407i − 0.691154i
357357 0 0
358358 − 4.85231i − 0.256452i
359359 −19.0142 −1.00353 −0.501766 0.865003i 0.667316π-0.667316\pi
−0.501766 + 0.865003i 0.667316π0.667316\pi
360360 0 0
361361 −19.4404 −1.02318
362362 −14.5392 −0.764163
363363 0 0
364364 −0.867106 −0.0454487
365365 0.475437 0.0248855
366366 0 0
367367 −5.69718 −0.297390 −0.148695 0.988883i 0.547507π-0.547507\pi
−0.148695 + 0.988883i 0.547507π0.547507\pi
368368 9.39715i 0.489860i
369369 0 0
370370 − 0.111277i − 0.00578504i
371371 −2.21367 −0.114928
372372 0 0
373373 − 22.1594i − 1.14737i −0.819076 0.573684i 0.805514π-0.805514\pi
0.819076 0.573684i 0.194486π-0.194486\pi
374374 0 0
375375 0 0
376376 − 27.0043i − 1.39264i
377377 − 12.8787i − 0.663288i
378378 0 0
379379 −0.381352 −0.0195887 −0.00979436 0.999952i 0.503118π-0.503118\pi
−0.00979436 + 0.999952i 0.503118π0.503118\pi
380380 0.379542 0.0194701
381381 0 0
382382 9.40774i 0.481342i
383383 12.6644i 0.647122i 0.946207 + 0.323561i 0.104880π0.104880\pi
−0.946207 + 0.323561i 0.895120π0.895120\pi
384384 0 0
385385 0 0
386386 17.2313i 0.877049i
387387 0 0
388388 4.62187 0.234640
389389 − 23.7986i − 1.20664i −0.797500 0.603318i 0.793845π-0.793845\pi
0.797500 0.603318i 0.206155π-0.206155\pi
390390 0 0
391391 29.0775i 1.47051i
392392 −16.8417 −0.850636
393393 0 0
394394 −14.4845 −0.729720
395395 0.120768 0.00607647
396396 0 0
397397 5.00497 0.251192 0.125596 0.992081i 0.459916π-0.459916\pi
0.125596 + 0.992081i 0.459916π0.459916\pi
398398 −7.13823 −0.357807
399399 0 0
400400 6.90761 0.345380
401401 − 4.24415i − 0.211943i −0.994369 0.105971i 0.966205π-0.966205\pi
0.994369 0.105971i 0.0337952π-0.0337952\pi
402402 0 0
403403 − 11.0413i − 0.550005i
404404 −10.6105 −0.527892
405405 0 0
406406 0.950735i 0.0471842i
407407 0 0
408408 0 0
409409 − 11.8056i − 0.583748i −0.956457 0.291874i 0.905721π-0.905721\pi
0.956457 0.291874i 0.0942788π-0.0942788\pi
410410 − 0.265103i − 0.0130925i
411411 0 0
412412 −20.0236 −0.986490
413413 −0.688291 −0.0338686
414414 0 0
415415 0.212328i 0.0104227i
416416 − 13.3612i − 0.655087i
417417 0 0
418418 0 0
419419 20.9795i 1.02492i 0.858712 + 0.512459i 0.171265π0.171265\pi
−0.858712 + 0.512459i 0.828735π0.828735\pi
420420 0 0
421421 −2.77978 −0.135478 −0.0677390 0.997703i 0.521579π-0.521579\pi
−0.0677390 + 0.997703i 0.521579π0.521579\pi
422422 − 12.9011i − 0.628014i
423423 0 0
424424 − 21.7656i − 1.05703i
425425 21.3742 1.03680
426426 0 0
427427 2.09438 0.101354
428428 2.08864 0.100958
429429 0 0
430430 0.0284806 0.00137346
431431 27.9292 1.34530 0.672652 0.739959i 0.265155π-0.265155\pi
0.672652 + 0.739959i 0.265155π0.265155\pi
432432 0 0
433433 −9.16809 −0.440590 −0.220295 0.975433i 0.570702π-0.570702\pi
−0.220295 + 0.975433i 0.570702π0.570702\pi
434434 0.815091i 0.0391256i
435435 0 0
436436 − 11.2096i − 0.536845i
437437 −42.1592 −2.01675
438438 0 0
439439 2.93111i 0.139894i 0.997551 + 0.0699472i 0.0222831π0.0222831\pi
−0.997551 + 0.0699472i 0.977717π0.977717\pi
440440 0 0
441441 0 0
442442 − 6.77402i − 0.322207i
443443 35.8414i 1.70288i 0.524455 + 0.851438i 0.324269π0.324269\pi
−0.524455 + 0.851438i 0.675731π0.675731\pi
444444 0 0
445445 −0.342698 −0.0162454
446446 6.65504 0.315125
447447 0 0
448448 0.304081i 0.0143665i
449449 14.2141i 0.670806i 0.942075 + 0.335403i 0.108872π0.108872\pi
−0.942075 + 0.335403i 0.891128π0.891128\pi
450450 0 0
451451 0 0
452452 − 0.806691i − 0.0379435i
453453 0 0
454454 −8.06414 −0.378469
455455 0.0227868i 0.00106826i
456456 0 0
457457 − 20.3993i − 0.954238i −0.878839 0.477119i 0.841681π-0.841681\pi
0.878839 0.477119i 0.158319π-0.158319\pi
458458 14.0963 0.658678
459459 0 0
460460 0.416260 0.0194082
461461 0.770354 0.0358790 0.0179395 0.999839i 0.494289π-0.494289\pi
0.0179395 + 0.999839i 0.494289π0.494289\pi
462462 0 0
463463 37.7948 1.75647 0.878236 0.478228i 0.158721π-0.158721\pi
0.878236 + 0.478228i 0.158721π0.158721\pi
464464 7.73312 0.359001
465465 0 0
466466 −11.1110 −0.514707
467467 17.6026i 0.814551i 0.913305 + 0.407276i 0.133521π0.133521\pi
−0.913305 + 0.407276i 0.866479π0.866479\pi
468468 0 0
469469 1.96143i 0.0905702i
470470 −0.307156 −0.0141680
471471 0 0
472472 − 6.76750i − 0.311499i
473473 0 0
474474 0 0
475475 30.9902i 1.42193i
476476 − 1.61108i − 0.0738436i
477477 0 0
478478 19.5389 0.893688
479479 −2.40586 −0.109927 −0.0549633 0.998488i 0.517504π-0.517504\pi
−0.0549633 + 0.998488i 0.517504π0.517504\pi
480480 0 0
481481 9.27708i 0.422998i
482482 9.88758i 0.450367i
483483 0 0
484484 0 0
485485 − 0.121459i − 0.00551517i
486486 0 0
487487 14.5978 0.661491 0.330745 0.943720i 0.392700π-0.392700\pi
0.330745 + 0.943720i 0.392700π0.392700\pi
488488 20.5926i 0.932185i
489489 0 0
490490 0.191563i 0.00865395i
491491 −25.0424 −1.13015 −0.565073 0.825041i 0.691152π-0.691152\pi
−0.565073 + 0.825041i 0.691152π0.691152\pi
492492 0 0
493493 23.9286 1.07769
494494 9.82158 0.441894
495495 0 0
496496 6.62982 0.297688
497497 −0.821634 −0.0368553
498498 0 0
499499 22.7116 1.01671 0.508355 0.861148i 0.330254π-0.330254\pi
0.508355 + 0.861148i 0.330254π0.330254\pi
500500 − 0.612063i − 0.0273723i
501501 0 0
502502 − 4.77866i − 0.213282i
503503 −10.4071 −0.464030 −0.232015 0.972712i 0.574532π-0.574532\pi
−0.232015 + 0.972712i 0.574532π0.574532\pi
504504 0 0
505505 0.278835i 0.0124080i
506506 0 0
507507 0 0
508508 19.4931i 0.864868i
509509 8.08550i 0.358383i 0.983814 + 0.179192i 0.0573482π0.0573482\pi
−0.983814 + 0.179192i 0.942652π0.942652\pi
510510 0 0
511511 2.92606 0.129441
512512 14.7311 0.651031
513513 0 0
514514 7.17082i 0.316291i
515515 0.526203i 0.0231873i
516516 0 0
517517 0 0
518518 − 0.684854i − 0.0300908i
519519 0 0
520520 −0.224047 −0.00982513
521521 − 35.0206i − 1.53428i −0.641479 0.767141i 0.721679π-0.721679\pi
0.641479 0.767141i 0.278321π-0.278321\pi
522522 0 0
523523 − 43.2956i − 1.89318i −0.322434 0.946592i 0.604501π-0.604501\pi
0.322434 0.946592i 0.395499π-0.395499\pi
524524 27.7067 1.21037
525525 0 0
526526 2.93288 0.127880
527527 20.5146 0.893630
528528 0 0
529529 −23.2378 −1.01034
530530 −0.247568 −0.0107537
531531 0 0
532532 2.33588 0.101273
533533 22.1013i 0.957316i
534534 0 0
535535 − 0.0548877i − 0.00237300i
536536 −19.2854 −0.833001
537537 0 0
538538 − 7.61509i − 0.328310i
539539 0 0
540540 0 0
541541 − 0.226329i − 0.00973066i −0.999988 0.00486533i 0.998451π-0.998451\pi
0.999988 0.00486533i 0.00154869π-0.00154869\pi
542542 10.9409i 0.469951i
543543 0 0
544544 24.8250 1.06436
545545 −0.294580 −0.0126184
546546 0 0
547547 16.4633i 0.703918i 0.936015 + 0.351959i 0.114484π0.114484\pi
−0.936015 + 0.351959i 0.885516π0.885516\pi
548548 24.5315i 1.04793i
549549 0 0
550550 0 0
551551 34.6938i 1.47801i
552552 0 0
553553 0.743260 0.0316066
554554 7.80594i 0.331643i
555555 0 0
556556 − 5.88723i − 0.249674i
557557 26.2818 1.11360 0.556798 0.830648i 0.312030π-0.312030\pi
0.556798 + 0.830648i 0.312030π0.312030\pi
558558 0 0
559559 −2.37440 −0.100426
560560 −0.0136825 −0.000578192 0
561561 0 0
562562 −1.07394 −0.0453013
563563 −36.3658 −1.53263 −0.766317 0.642463i 0.777913π-0.777913\pi
−0.766317 + 0.642463i 0.777913π0.777913\pi
564564 0 0
565565 −0.0211992 −0.000891856 0
566566 − 18.2848i − 0.768565i
567567 0 0
568568 − 8.07857i − 0.338969i
569569 −20.2307 −0.848114 −0.424057 0.905636i 0.639394π-0.639394\pi
−0.424057 + 0.905636i 0.639394π0.639394\pi
570570 0 0
571571 − 24.4002i − 1.02112i −0.859843 0.510558i 0.829439π-0.829439\pi
0.859843 0.510558i 0.170561π-0.170561\pi
572572 0 0
573573 0 0
574574 − 1.63157i − 0.0681004i
575575 33.9883i 1.41741i
576576 0 0
577577 −19.3030 −0.803593 −0.401796 0.915729i 0.631614π-0.631614\pi
−0.401796 + 0.915729i 0.631614π0.631614\pi
578578 0.885126 0.0368164
579579 0 0
580580 − 0.342550i − 0.0142236i
581581 1.30676i 0.0542137i
582582 0 0
583583 0 0
584584 28.7700i 1.19051i
585585 0 0
586586 18.1258 0.748771
587587 − 19.1363i − 0.789840i −0.918715 0.394920i 0.870772π-0.870772\pi
0.918715 0.394920i 0.129228π-0.129228\pi
588588 0 0
589589 29.7439i 1.22558i
590590 −0.0769757 −0.00316904
591591 0 0
592592 −5.57049 −0.228946
593593 14.9885 0.615503 0.307751 0.951467i 0.400423π-0.400423\pi
0.307751 + 0.951467i 0.400423π0.400423\pi
594594 0 0
595595 −0.0423378 −0.00173568
596596 15.6746 0.642058
597597 0 0
598598 10.7717 0.440489
599599 33.3409i 1.36227i 0.732158 + 0.681135i 0.238513π0.238513\pi
−0.732158 + 0.681135i 0.761487π0.761487\pi
600600 0 0
601601 − 42.2730i − 1.72435i −0.506610 0.862175i 0.669102π-0.669102\pi
0.506610 0.862175i 0.330898π-0.330898\pi
602602 0.175283 0.00714401
603603 0 0
604604 13.3859i 0.544664i
605605 0 0
606606 0 0
607607 − 30.8859i − 1.25362i −0.779172 0.626810i 0.784360π-0.784360\pi
0.779172 0.626810i 0.215640π-0.215640\pi
608608 35.9935i 1.45973i
609609 0 0
610610 0.234227 0.00948358
611611 25.6072 1.03596
612612 0 0
613613 15.9745i 0.645204i 0.946535 + 0.322602i 0.104558π0.104558\pi
−0.946535 + 0.322602i 0.895442π0.895442\pi
614614 17.9013i 0.722436i
615615 0 0
616616 0 0
617617 2.63374i 0.106030i 0.998594 + 0.0530151i 0.0168831π0.0168831\pi
−0.998594 + 0.0530151i 0.983117π0.983117\pi
618618 0 0
619619 20.2495 0.813894 0.406947 0.913452i 0.366593π-0.366593\pi
0.406947 + 0.913452i 0.366593π0.366593\pi
620620 − 0.293677i − 0.0117944i
621621 0 0
622622 − 9.17132i − 0.367736i
623623 −2.10913 −0.0845003
624624 0 0
625625 24.9759 0.999035
626626 −7.74212 −0.309437
627627 0 0
628628 19.8884 0.793633
629629 −17.2367 −0.687274
630630 0 0
631631 8.44044 0.336009 0.168004 0.985786i 0.446268π-0.446268\pi
0.168004 + 0.985786i 0.446268π0.446268\pi
632632 7.30797i 0.290696i
633633 0 0
634634 − 7.53859i − 0.299396i
635635 0.512264 0.0203286
636636 0 0
637637 − 15.9704i − 0.632771i
638638 0 0
639639 0 0
640640 − 0.431685i − 0.0170639i
641641 − 32.3145i − 1.27634i −0.769894 0.638172i 0.779691π-0.779691\pi
0.769894 0.638172i 0.220309π-0.220309\pi
642642 0 0
643643 13.7767 0.543300 0.271650 0.962396i 0.412431π-0.412431\pi
0.271650 + 0.962396i 0.412431π0.412431\pi
644644 2.56186 0.100951
645645 0 0
646646 18.2484i 0.717975i
647647 − 8.52739i − 0.335246i −0.985851 0.167623i 0.946391π-0.946391\pi
0.985851 0.167623i 0.0536092π-0.0536092\pi
648648 0 0
649649 0 0
650650 − 7.91804i − 0.310571i
651651 0 0
652652 14.0076 0.548579
653653 − 1.20799i − 0.0472722i −0.999721 0.0236361i 0.992476π-0.992476\pi
0.999721 0.0236361i 0.00752430π-0.00752430\pi
654654 0 0
655655 − 0.728108i − 0.0284496i
656656 −13.2709 −0.518142
657657 0 0
658658 −1.89038 −0.0736947
659659 9.41054 0.366583 0.183291 0.983059i 0.441325π-0.441325\pi
0.183291 + 0.983059i 0.441325π0.441325\pi
660660 0 0
661661 15.1027 0.587425 0.293713 0.955894i 0.405109π-0.405109\pi
0.293713 + 0.955894i 0.405109π0.405109\pi
662662 2.91343 0.113234
663663 0 0
664664 −12.8485 −0.498619
665665 − 0.0613851i − 0.00238041i
666666 0 0
667667 38.0501i 1.47331i
668668 −11.6138 −0.449351
669669 0 0
670670 0.219358i 0.00847453i
671671 0 0
672672 0 0
673673 41.5989i 1.60352i 0.597647 + 0.801759i 0.296102π0.296102\pi
−0.597647 + 0.801759i 0.703898π0.703898\pi
674674 − 1.83249i − 0.0705850i
675675 0 0
676676 −11.7567 −0.452182
677677 4.52056 0.173739 0.0868696 0.996220i 0.472314π-0.472314\pi
0.0868696 + 0.996220i 0.472314π0.472314\pi
678678 0 0
679679 − 0.747516i − 0.0286870i
680680 − 0.416279i − 0.0159636i
681681 0 0
682682 0 0
683683 − 34.7783i − 1.33075i −0.746507 0.665377i 0.768271π-0.768271\pi
0.746507 0.665377i 0.231729π-0.231729\pi
684684 0 0
685685 0.644667 0.0246315
686686 2.36829i 0.0904219i
687687 0 0
688688 − 1.42572i − 0.0543552i
689689 20.6395 0.786302
690690 0 0
691691 −17.8835 −0.680320 −0.340160 0.940368i 0.610481π-0.610481\pi
−0.340160 + 0.940368i 0.610481π0.610481\pi
692692 −25.3670 −0.964308
693693 0 0
694694 11.4278 0.433794
695695 −0.154712 −0.00586854
696696 0 0
697697 −41.0641 −1.55542
698698 9.48105i 0.358863i
699699 0 0
700700 − 1.88316i − 0.0711768i
701701 −17.4712 −0.659878 −0.329939 0.944002i 0.607028π-0.607028\pi
−0.329939 + 0.944002i 0.607028π0.607028\pi
702702 0 0
703703 − 24.9914i − 0.942568i
704704 0 0
705705 0 0
706706 − 7.58833i − 0.285591i
707707 1.71608i 0.0645399i
708708 0 0
709709 8.33849 0.313158 0.156579 0.987665i 0.449953π-0.449953\pi
0.156579 + 0.987665i 0.449953π0.449953\pi
710710 −0.0918882 −0.00344850
711711 0 0
712712 − 20.7376i − 0.777174i
713713 32.6214i 1.22168i
714714 0 0
715715 0 0
716716 10.7598i 0.402112i
717717 0 0
718718 −13.0873 −0.488415
719719 23.6031i 0.880249i 0.897937 + 0.440124i 0.145066π0.145066\pi
−0.897937 + 0.440124i 0.854934π0.854934\pi
720720 0 0
721721 3.23850i 0.120608i
722722 −13.3807 −0.497977
723723 0 0
724724 32.2400 1.19819
725725 27.9697 1.03877
726726 0 0
727727 1.90462 0.0706386 0.0353193 0.999376i 0.488755π-0.488755\pi
0.0353193 + 0.999376i 0.488755π0.488755\pi
728728 −1.37889 −0.0511052
729729 0 0
730730 0.327239 0.0121117
731731 − 4.41161i − 0.163169i
732732 0 0
733733 − 17.6118i − 0.650506i −0.945627 0.325253i 0.894550π-0.894550\pi
0.945627 0.325253i 0.105450π-0.105450\pi
734734 −3.92132 −0.144738
735735 0 0
736736 39.4756i 1.45509i
737737 0 0
738738 0 0
739739 − 4.77737i − 0.175738i −0.996132 0.0878692i 0.971994π-0.971994\pi
0.996132 0.0878692i 0.0280058π-0.0280058\pi
740740 0.246753i 0.00907082i
741741 0 0
742742 −1.52365 −0.0559350
743743 −1.83777 −0.0674211 −0.0337105 0.999432i 0.510732π-0.510732\pi
−0.0337105 + 0.999432i 0.510732π0.510732\pi
744744 0 0
745745 − 0.411916i − 0.0150914i
746746 − 15.2521i − 0.558419i
747747 0 0
748748 0 0
749749 − 0.337805i − 0.0123431i
750750 0 0
751751 −37.9446 −1.38462 −0.692308 0.721602i 0.743406π-0.743406\pi
−0.692308 + 0.721602i 0.743406π0.743406\pi
752752 15.3760i 0.560707i
753753 0 0
754754 − 8.86431i − 0.322819i
755755 0.351770 0.0128022
756756 0 0
757757 −30.6265 −1.11314 −0.556569 0.830802i 0.687882π-0.687882\pi
−0.556569 + 0.830802i 0.687882π0.687882\pi
758758 −0.262481 −0.00953373
759759 0 0
760760 0.603558 0.0218934
761761 30.8652 1.11886 0.559432 0.828876i 0.311019π-0.311019\pi
0.559432 + 0.828876i 0.311019π0.311019\pi
762762 0 0
763763 −1.81299 −0.0656345
764764 − 20.8613i − 0.754734i
765765 0 0
766766 8.71682i 0.314951i
767767 6.41738 0.231718
768768 0 0
769769 19.3154i 0.696532i 0.937396 + 0.348266i 0.113229π0.113229\pi
−0.937396 + 0.348266i 0.886771π0.886771\pi
770770 0 0
771771 0 0
772772 − 38.2096i − 1.37519i
773773 − 2.94203i − 0.105818i −0.998599 0.0529088i 0.983151π-0.983151\pi
0.998599 0.0529088i 0.0168493π-0.0168493\pi
774774 0 0
775775 23.9792 0.861358
776776 7.34982 0.263843
777777 0 0
778778 − 16.3804i − 0.587265i
779779 − 59.5385i − 2.13319i
780780 0 0
781781 0 0
782782 20.0138i 0.715693i
783783 0 0
784784 9.58955 0.342484
785785 − 0.522651i − 0.0186542i
786786 0 0
787787 8.04569i 0.286798i 0.989665 + 0.143399i 0.0458032π0.0458032\pi
−0.989665 + 0.143399i 0.954197π0.954197\pi
788788 32.1188 1.14419
789789 0 0
790790 0.0831232 0.00295739
791791 −0.130470 −0.00463897
792792 0 0
793793 −19.5272 −0.693433
794794 3.44487 0.122254
795795 0 0
796796 15.8287 0.561033
797797 − 54.9219i − 1.94543i −0.231996 0.972717i 0.574526π-0.574526\pi
0.231996 0.972717i 0.425474π-0.425474\pi
798798 0 0
799799 47.5780i 1.68319i
800800 29.0175 1.02592
801801 0 0
802802 − 2.92121i − 0.103152i
803803 0 0
804804 0 0
805805 − 0.0673236i − 0.00237285i
806806 − 7.59961i − 0.267685i
807807 0 0
808808 −16.8731 −0.593593
809809 −24.3526 −0.856193 −0.428096 0.903733i 0.640816π-0.640816\pi
−0.428096 + 0.903733i 0.640816π0.640816\pi
810810 0 0
811811 20.7604i 0.728996i 0.931204 + 0.364498i 0.118759π0.118759\pi
−0.931204 + 0.364498i 0.881241π0.881241\pi
812812 − 2.10821i − 0.0739838i
813813 0 0
814814 0 0
815815 − 0.368107i − 0.0128942i
816816 0 0
817817 6.39635 0.223780
818818 − 8.12567i − 0.284107i
819819 0 0
820820 0.587855i 0.0205288i
821821 −28.6373 −0.999449 −0.499725 0.866184i 0.666565π-0.666565\pi
−0.499725 + 0.866184i 0.666565π0.666565\pi
822822 0 0
823823 2.48784 0.0867207 0.0433603 0.999059i 0.486194π-0.486194\pi
0.0433603 + 0.999059i 0.486194π0.486194\pi
824824 −31.8420 −1.10927
825825 0 0
826826 −0.473745 −0.0164837
827827 23.8333 0.828765 0.414383 0.910103i 0.363998π-0.363998\pi
0.414383 + 0.910103i 0.363998π0.363998\pi
828828 0 0
829829 −40.6340 −1.41128 −0.705639 0.708572i 0.749340π-0.749340\pi
−0.705639 + 0.708572i 0.749340π0.749340\pi
830830 0.146143i 0.00507270i
831831 0 0
832832 − 2.83514i − 0.0982909i
833833 29.6729 1.02811
834834 0 0
835835 0.305201i 0.0105619i
836836 0 0
837837 0 0
838838 14.4400i 0.498822i
839839 − 57.2232i − 1.97556i −0.155842 0.987782i 0.549809π-0.549809\pi
0.155842 0.987782i 0.450191π-0.450191\pi
840840 0 0
841841 2.31232 0.0797352
842842 −1.91330 −0.0659365
843843 0 0
844844 28.6075i 0.984712i
845845 0.308958i 0.0106285i
846846 0 0
847847 0 0
848848 12.3931i 0.425582i
849849 0 0
850850 14.7117 0.504606
851851 − 27.4091i − 0.939572i
852852 0 0
853853 30.5412i 1.04571i 0.852422 + 0.522855i 0.175133π0.175133\pi
−0.852422 + 0.522855i 0.824867π0.824867\pi
854854 1.44154 0.0493286
855855 0 0
856856 3.32141 0.113523
857857 6.14781 0.210005 0.105003 0.994472i 0.466515π-0.466515\pi
0.105003 + 0.994472i 0.466515π0.466515\pi
858858 0 0
859859 −27.5988 −0.941660 −0.470830 0.882224i 0.656045π-0.656045\pi
−0.470830 + 0.882224i 0.656045π0.656045\pi
860860 −0.0631545 −0.00215355
861861 0 0
862862 19.2234 0.654753
863863 42.8009i 1.45696i 0.685067 + 0.728481i 0.259773π0.259773\pi
−0.685067 + 0.728481i 0.740227π0.740227\pi
864864 0 0
865865 0.666624i 0.0226659i
866866 −6.31032 −0.214433
867867 0 0
868868 − 1.80743i − 0.0613481i
869869 0 0
870870 0 0
871871 − 18.2876i − 0.619652i
872872 − 17.8259i − 0.603660i
873873 0 0
874874 −29.0178 −0.981543
875875 −0.0989917 −0.00334653
876876 0 0
877877 − 11.2305i − 0.379227i −0.981859 0.189613i 0.939277π-0.939277\pi
0.981859 0.189613i 0.0607235π-0.0607235\pi
878878 2.01746i 0.0680860i
879879 0 0
880880 0 0
881881 − 47.3136i − 1.59403i −0.603957 0.797017i 0.706410π-0.706410\pi
0.603957 0.797017i 0.293590π-0.293590\pi
882882 0 0
883883 18.2617 0.614555 0.307278 0.951620i 0.400582π-0.400582\pi
0.307278 + 0.951620i 0.400582π0.400582\pi
884884 15.0211i 0.505214i
885885 0 0
886886 24.6693i 0.828782i
887887 −40.7104 −1.36692 −0.683460 0.729988i 0.739526π-0.739526\pi
−0.683460 + 0.729988i 0.739526π0.739526\pi
888888 0 0
889889 3.15271 0.105739
890890 −0.235876 −0.00790658
891891 0 0
892892 −14.7573 −0.494110
893893 −68.9829 −2.30842
894894 0 0
895895 0.282758 0.00945157
896896 − 2.65680i − 0.0887573i
897897 0 0
898898 9.78345i 0.326478i
899899 26.8449 0.895327
900900 0 0
901901 38.3480i 1.27756i
902902 0 0
903903 0 0
904904 − 1.28282i − 0.0426660i
905905 − 0.847242i − 0.0281633i
906906 0 0
907907 1.18171 0.0392380 0.0196190 0.999808i 0.493755π-0.493755\pi
0.0196190 + 0.999808i 0.493755π0.493755\pi
908908 17.8819 0.593431
909909 0 0
910910 0.0156840i 0 0.000519919i
911911 − 21.1641i − 0.701198i −0.936526 0.350599i 0.885978π-0.885978\pi
0.936526 0.350599i 0.114022π-0.114022\pi
912912 0 0
913913 0 0
914914 − 14.0406i − 0.464423i
915915 0 0
916916 −31.2580 −1.03279
917917 − 4.48112i − 0.147980i
918918 0 0
919919 14.0906i 0.464805i 0.972620 + 0.232402i 0.0746586π0.0746586\pi
−0.972620 + 0.232402i 0.925341π0.925341\pi
920920 0.661948 0.0218238
921921 0 0
922922 0.530228 0.0174621
923923 7.66061 0.252152
924924 0 0
925925 −20.1477 −0.662454
926926 26.0138 0.854867
927927 0 0
928928 32.4854 1.06638
929929 − 34.0857i − 1.11832i −0.829061 0.559158i 0.811125π-0.811125\pi
0.829061 0.559158i 0.188875π-0.188875\pi
930930 0 0
931931 43.0225i 1.41000i
932932 24.6381 0.807049
933933 0 0
934934 12.1157i 0.396438i
935935 0 0
936936 0 0
937937 6.75011i 0.220517i 0.993903 + 0.110258i 0.0351678π0.0351678\pi
−0.993903 + 0.110258i 0.964832π0.964832\pi
938938 1.35003i 0.0440801i
939939 0 0
940940 0.681104 0.0222152
941941 −33.2979 −1.08548 −0.542740 0.839901i 0.682613π-0.682613\pi
−0.542740 + 0.839901i 0.682613π0.682613\pi
942942 0 0
943943 − 65.2984i − 2.12641i
944944 3.85336i 0.125416i
945945 0 0
946946 0 0
947947 − 0.751232i − 0.0244117i −0.999926 0.0122059i 0.996115π-0.996115\pi
0.999926 0.0122059i 0.00388535π-0.00388535\pi
948948 0 0
949949 −27.2815 −0.885596
950950 21.3303i 0.692046i
951951 0 0
952952 − 2.56197i − 0.0830341i
953953 −4.65369 −0.150748 −0.0753739 0.997155i 0.524015π-0.524015\pi
−0.0753739 + 0.997155i 0.524015π0.524015\pi
954954 0 0
955955 −0.548217 −0.0177399
956956 −43.3266 −1.40128
957957 0 0
958958 −1.65593 −0.0535007
959959 3.96758 0.128120
960960 0 0
961961 −7.98515 −0.257585
962962 6.38533i 0.205871i
963963 0 0
964964 − 21.9253i − 0.706166i
965965 −1.00412 −0.0323237
966966 0 0
967967 − 21.7529i − 0.699525i −0.936838 0.349763i 0.886262π-0.886262\pi
0.936838 0.349763i 0.113738π-0.113738\pi
968968 0 0
969969 0 0
970970 − 0.0835991i − 0.00268421i
971971 5.87314i 0.188478i 0.995550 + 0.0942391i 0.0300418π0.0300418\pi
−0.995550 + 0.0942391i 0.969958π0.969958\pi
972972 0 0
973973 −0.952168 −0.0305251
974974 10.0476 0.321944
975975 0 0
976976 − 11.7253i − 0.375317i
977977 0.919993i 0.0294332i 0.999892 + 0.0147166i 0.00468460π0.00468460\pi
−0.999892 + 0.0147166i 0.995315π0.995315\pi
978978 0 0
979979 0 0
980980 − 0.424783i − 0.0135692i
981981 0 0
982982 −17.2364 −0.550037
983983 46.6359i 1.48745i 0.668483 + 0.743727i 0.266944π0.266944\pi
−0.668483 + 0.743727i 0.733056π0.733056\pi
984984 0 0
985985 − 0.844056i − 0.0268939i
986986 16.4698 0.524506
987987 0 0
988988 −21.7789 −0.692880
989989 7.01515 0.223069
990990 0 0
991991 6.21090 0.197296 0.0986478 0.995122i 0.468548π-0.468548\pi
0.0986478 + 0.995122i 0.468548π0.468548\pi
992992 27.8506 0.884257
993993 0 0
994994 −0.565523 −0.0179373
995995 − 0.415965i − 0.0131870i
996996 0 0
997997 − 28.5668i − 0.904719i −0.891836 0.452360i 0.850582π-0.850582\pi
0.891836 0.452360i 0.149418π-0.149418\pi
998998 15.6322 0.494828
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.d.g.1088.12 16
3.2 odd 2 inner 1089.2.d.g.1088.5 16
11.3 even 5 99.2.j.a.35.3 yes 16
11.7 odd 10 99.2.j.a.17.2 16
11.10 odd 2 inner 1089.2.d.g.1088.6 16
33.14 odd 10 99.2.j.a.35.2 yes 16
33.29 even 10 99.2.j.a.17.3 yes 16
33.32 even 2 inner 1089.2.d.g.1088.11 16
44.3 odd 10 1584.2.cd.c.1025.2 16
44.7 even 10 1584.2.cd.c.17.3 16
99.7 odd 30 891.2.u.c.215.2 32
99.14 odd 30 891.2.u.c.431.2 32
99.25 even 15 891.2.u.c.134.2 32
99.29 even 30 891.2.u.c.215.3 32
99.40 odd 30 891.2.u.c.512.3 32
99.47 odd 30 891.2.u.c.134.3 32
99.58 even 15 891.2.u.c.431.3 32
99.95 even 30 891.2.u.c.512.2 32
132.47 even 10 1584.2.cd.c.1025.3 16
132.95 odd 10 1584.2.cd.c.17.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.17.2 16 11.7 odd 10
99.2.j.a.17.3 yes 16 33.29 even 10
99.2.j.a.35.2 yes 16 33.14 odd 10
99.2.j.a.35.3 yes 16 11.3 even 5
891.2.u.c.134.2 32 99.25 even 15
891.2.u.c.134.3 32 99.47 odd 30
891.2.u.c.215.2 32 99.7 odd 30
891.2.u.c.215.3 32 99.29 even 30
891.2.u.c.431.2 32 99.14 odd 30
891.2.u.c.431.3 32 99.58 even 15
891.2.u.c.512.2 32 99.95 even 30
891.2.u.c.512.3 32 99.40 odd 30
1089.2.d.g.1088.5 16 3.2 odd 2 inner
1089.2.d.g.1088.6 16 11.10 odd 2 inner
1089.2.d.g.1088.11 16 33.32 even 2 inner
1089.2.d.g.1088.12 16 1.1 even 1 trivial
1584.2.cd.c.17.2 16 132.95 odd 10
1584.2.cd.c.17.3 16 44.7 even 10
1584.2.cd.c.1025.2 16 44.3 odd 10
1584.2.cd.c.1025.3 16 132.47 even 10