Properties

Label 990.2.d.a.791.8
Level $990$
Weight $2$
Character 990.791
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(791,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.791");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4328587264.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 109x^{4} + 260x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 791.8
Root \(2.18398i\) of defining polynomial
Character \(\chi\) \(=\) 990.791
Dual form 990.2.d.a.791.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000i q^{5} +3.08861i q^{7} -1.00000 q^{8} -1.00000i q^{10} +(-0.130093 - 3.31407i) q^{11} +3.78217i q^{13} -3.08861i q^{14} +1.00000 q^{16} +0.828427 q^{17} +2.50283i q^{19} +1.00000i q^{20} +(0.130093 + 3.31407i) q^{22} +2.69356i q^{23} -1.00000 q^{25} -3.78217i q^{26} +3.08861i q^{28} -4.36796 q^{29} -2.36796 q^{31} -1.00000 q^{32} -0.828427 q^{34} -3.08861 q^{35} +2.72065 q^{37} -2.50283i q^{38} -1.00000i q^{40} -10.2850 q^{41} -0.325600i q^{43} +(-0.130093 - 3.31407i) q^{44} -2.69356i q^{46} -5.67440i q^{47} -2.53953 q^{49} +1.00000 q^{50} +3.78217i q^{52} +12.5452i q^{53} +(3.31407 - 0.130093i) q^{55} -3.08861i q^{56} +4.36796 q^{58} +0.720655i q^{59} +3.98245i q^{61} +2.36796 q^{62} +1.00000 q^{64} -3.78217 q^{65} -9.52603 q^{67} +0.828427 q^{68} +3.08861 q^{70} +2.96330i q^{71} +0.367959i q^{73} -2.72065 q^{74} +2.50283i q^{76} +(10.2359 - 0.401807i) q^{77} +9.19639i q^{79} +1.00000i q^{80} +10.2850 q^{82} +2.11732 q^{83} +0.828427i q^{85} +0.325600i q^{86} +(0.130093 + 3.31407i) q^{88} +15.1558i q^{89} -11.6817 q^{91} +2.69356i q^{92} +5.67440i q^{94} -2.50283 q^{95} -8.23713 q^{97} +2.53953 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 8 q^{8} + 8 q^{16} - 16 q^{17} - 8 q^{25} - 8 q^{29} + 8 q^{31} - 8 q^{32} + 16 q^{34} + 24 q^{37} - 8 q^{41} - 16 q^{49} + 8 q^{50} + 12 q^{55} + 8 q^{58} - 8 q^{62} + 8 q^{64}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 3.08861i 1.16739i 0.811974 + 0.583693i \(0.198393\pi\)
−0.811974 + 0.583693i \(0.801607\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −0.130093 3.31407i −0.0392245 0.999230i
\(12\) 0 0
\(13\) 3.78217i 1.04899i 0.851415 + 0.524493i \(0.175745\pi\)
−0.851415 + 0.524493i \(0.824255\pi\)
\(14\) 3.08861i 0.825467i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.828427 0.200923 0.100462 0.994941i \(-0.467968\pi\)
0.100462 + 0.994941i \(0.467968\pi\)
\(18\) 0 0
\(19\) 2.50283i 0.574188i 0.957902 + 0.287094i \(0.0926892\pi\)
−0.957902 + 0.287094i \(0.907311\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 0 0
\(22\) 0.130093 + 3.31407i 0.0277359 + 0.706563i
\(23\) 2.69356i 0.561646i 0.959760 + 0.280823i \(0.0906074\pi\)
−0.959760 + 0.280823i \(0.909393\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 3.78217i 0.741745i
\(27\) 0 0
\(28\) 3.08861i 0.583693i
\(29\) −4.36796 −0.811110 −0.405555 0.914071i \(-0.632922\pi\)
−0.405555 + 0.914071i \(0.632922\pi\)
\(30\) 0 0
\(31\) −2.36796 −0.425298 −0.212649 0.977129i \(-0.568209\pi\)
−0.212649 + 0.977129i \(0.568209\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −0.828427 −0.142074
\(35\) −3.08861 −0.522071
\(36\) 0 0
\(37\) 2.72065 0.447273 0.223636 0.974673i \(-0.428207\pi\)
0.223636 + 0.974673i \(0.428207\pi\)
\(38\) 2.50283i 0.406012i
\(39\) 0 0
\(40\) 1.00000i 0.158114i
\(41\) −10.2850 −1.60625 −0.803123 0.595813i \(-0.796830\pi\)
−0.803123 + 0.595813i \(0.796830\pi\)
\(42\) 0 0
\(43\) 0.325600i 0.0496536i −0.999692 0.0248268i \(-0.992097\pi\)
0.999692 0.0248268i \(-0.00790343\pi\)
\(44\) −0.130093 3.31407i −0.0196123 0.499615i
\(45\) 0 0
\(46\) 2.69356i 0.397144i
\(47\) 5.67440i 0.827696i −0.910346 0.413848i \(-0.864184\pi\)
0.910346 0.413848i \(-0.135816\pi\)
\(48\) 0 0
\(49\) −2.53953 −0.362790
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 3.78217i 0.524493i
\(53\) 12.5452i 1.72321i 0.507576 + 0.861607i \(0.330542\pi\)
−0.507576 + 0.861607i \(0.669458\pi\)
\(54\) 0 0
\(55\) 3.31407 0.130093i 0.446869 0.0175417i
\(56\) 3.08861i 0.412733i
\(57\) 0 0
\(58\) 4.36796 0.573541
\(59\) 0.720655i 0.0938212i 0.998899 + 0.0469106i \(0.0149376\pi\)
−0.998899 + 0.0469106i \(0.985062\pi\)
\(60\) 0 0
\(61\) 3.98245i 0.509901i 0.966954 + 0.254951i \(0.0820592\pi\)
−0.966954 + 0.254951i \(0.917941\pi\)
\(62\) 2.36796 0.300731
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.78217 −0.469121
\(66\) 0 0
\(67\) −9.52603 −1.16379 −0.581895 0.813264i \(-0.697688\pi\)
−0.581895 + 0.813264i \(0.697688\pi\)
\(68\) 0.828427 0.100462
\(69\) 0 0
\(70\) 3.08861 0.369160
\(71\) 2.96330i 0.351678i 0.984419 + 0.175839i \(0.0562639\pi\)
−0.984419 + 0.175839i \(0.943736\pi\)
\(72\) 0 0
\(73\) 0.367959i 0.0430663i 0.999768 + 0.0215332i \(0.00685475\pi\)
−0.999768 + 0.0215332i \(0.993145\pi\)
\(74\) −2.72065 −0.316270
\(75\) 0 0
\(76\) 2.50283i 0.287094i
\(77\) 10.2359 0.401807i 1.16649 0.0457902i
\(78\) 0 0
\(79\) 9.19639i 1.03467i 0.855782 + 0.517337i \(0.173077\pi\)
−0.855782 + 0.517337i \(0.826923\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) 10.2850 1.13579
\(83\) 2.11732 0.232406 0.116203 0.993225i \(-0.462928\pi\)
0.116203 + 0.993225i \(0.462928\pi\)
\(84\) 0 0
\(85\) 0.828427i 0.0898555i
\(86\) 0.325600i 0.0351104i
\(87\) 0 0
\(88\) 0.130093 + 3.31407i 0.0138680 + 0.353281i
\(89\) 15.1558i 1.60651i 0.595635 + 0.803255i \(0.296900\pi\)
−0.595635 + 0.803255i \(0.703100\pi\)
\(90\) 0 0
\(91\) −11.6817 −1.22457
\(92\) 2.69356i 0.280823i
\(93\) 0 0
\(94\) 5.67440i 0.585270i
\(95\) −2.50283 −0.256785
\(96\) 0 0
\(97\) −8.23713 −0.836354 −0.418177 0.908366i \(-0.637331\pi\)
−0.418177 + 0.908366i \(0.637331\pi\)
\(98\) 2.53953 0.256531
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −8.91314 −0.886891 −0.443445 0.896301i \(-0.646244\pi\)
−0.443445 + 0.896301i \(0.646244\pi\)
\(102\) 0 0
\(103\) 10.4023 1.02497 0.512486 0.858696i \(-0.328725\pi\)
0.512486 + 0.858696i \(0.328725\pi\)
\(104\) 3.78217i 0.370873i
\(105\) 0 0
\(106\) 12.5452i 1.21850i
\(107\) 6.69760 0.647481 0.323741 0.946146i \(-0.395059\pi\)
0.323741 + 0.946146i \(0.395059\pi\)
\(108\) 0 0
\(109\) 11.3313i 1.08534i −0.839947 0.542669i \(-0.817414\pi\)
0.839947 0.542669i \(-0.182586\pi\)
\(110\) −3.31407 + 0.130093i −0.315984 + 0.0124039i
\(111\) 0 0
\(112\) 3.08861i 0.291847i
\(113\) 5.04801i 0.474877i 0.971403 + 0.237439i \(0.0763078\pi\)
−0.971403 + 0.237439i \(0.923692\pi\)
\(114\) 0 0
\(115\) −2.69356 −0.251176
\(116\) −4.36796 −0.405555
\(117\) 0 0
\(118\) 0.720655i 0.0663416i
\(119\) 2.55869i 0.234555i
\(120\) 0 0
\(121\) −10.9662 + 0.862276i −0.996923 + 0.0783887i
\(122\) 3.98245i 0.360554i
\(123\) 0 0
\(124\) −2.36796 −0.212649
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 12.2602i 1.08792i 0.839113 + 0.543958i \(0.183075\pi\)
−0.839113 + 0.543958i \(0.816925\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 3.78217 0.331718
\(131\) −12.7703 −1.11574 −0.557872 0.829927i \(-0.688382\pi\)
−0.557872 + 0.829927i \(0.688382\pi\)
\(132\) 0 0
\(133\) −7.73026 −0.670299
\(134\) 9.52603 0.822923
\(135\) 0 0
\(136\) −0.828427 −0.0710370
\(137\) 7.35607i 0.628471i 0.949345 + 0.314236i \(0.101748\pi\)
−0.949345 + 0.314236i \(0.898252\pi\)
\(138\) 0 0
\(139\) 2.13487i 0.181077i −0.995893 0.0905386i \(-0.971141\pi\)
0.995893 0.0905386i \(-0.0288588\pi\)
\(140\) −3.08861 −0.261035
\(141\) 0 0
\(142\) 2.96330i 0.248674i
\(143\) 12.5344 0.492034i 1.04818 0.0411460i
\(144\) 0 0
\(145\) 4.36796i 0.362739i
\(146\) 0.367959i 0.0304525i
\(147\) 0 0
\(148\) 2.72065 0.223636
\(149\) 22.0496 1.80638 0.903188 0.429245i \(-0.141220\pi\)
0.903188 + 0.429245i \(0.141220\pi\)
\(150\) 0 0
\(151\) 16.7958i 1.36682i −0.730033 0.683412i \(-0.760495\pi\)
0.730033 0.683412i \(-0.239505\pi\)
\(152\) 2.50283i 0.203006i
\(153\) 0 0
\(154\) −10.2359 + 0.401807i −0.824831 + 0.0323785i
\(155\) 2.36796i 0.190199i
\(156\) 0 0
\(157\) −22.1191 −1.76529 −0.882647 0.470036i \(-0.844241\pi\)
−0.882647 + 0.470036i \(0.844241\pi\)
\(158\) 9.19639i 0.731625i
\(159\) 0 0
\(160\) 1.00000i 0.0790569i
\(161\) −8.31936 −0.655658
\(162\) 0 0
\(163\) 25.3059 1.98211 0.991056 0.133446i \(-0.0426042\pi\)
0.991056 + 0.133446i \(0.0426042\pi\)
\(164\) −10.2850 −0.803123
\(165\) 0 0
\(166\) −2.11732 −0.164336
\(167\) 14.1095 1.09183 0.545914 0.837841i \(-0.316182\pi\)
0.545914 + 0.837841i \(0.316182\pi\)
\(168\) 0 0
\(169\) −1.30483 −0.100371
\(170\) 0.828427i 0.0635375i
\(171\) 0 0
\(172\) 0.325600i 0.0248268i
\(173\) −16.2020 −1.23182 −0.615909 0.787817i \(-0.711211\pi\)
−0.615909 + 0.787817i \(0.711211\pi\)
\(174\) 0 0
\(175\) 3.08861i 0.233477i
\(176\) −0.130093 3.31407i −0.00980613 0.249808i
\(177\) 0 0
\(178\) 15.1558i 1.13597i
\(179\) 7.02871i 0.525350i −0.964884 0.262675i \(-0.915395\pi\)
0.964884 0.262675i \(-0.0846048\pi\)
\(180\) 0 0
\(181\) 8.64341 0.642459 0.321230 0.947001i \(-0.395904\pi\)
0.321230 + 0.947001i \(0.395904\pi\)
\(182\) 11.6817 0.865903
\(183\) 0 0
\(184\) 2.69356i 0.198572i
\(185\) 2.72065i 0.200026i
\(186\) 0 0
\(187\) −0.107773 2.74547i −0.00788111 0.200768i
\(188\) 5.67440i 0.413848i
\(189\) 0 0
\(190\) 2.50283 0.181574
\(191\) 15.6145i 1.12983i 0.825151 + 0.564913i \(0.191090\pi\)
−0.825151 + 0.564913i \(0.808910\pi\)
\(192\) 0 0
\(193\) 5.67036i 0.408161i 0.978954 + 0.204081i \(0.0654205\pi\)
−0.978954 + 0.204081i \(0.934579\pi\)
\(194\) 8.23713 0.591391
\(195\) 0 0
\(196\) −2.53953 −0.181395
\(197\) 20.6299 1.46982 0.734910 0.678165i \(-0.237224\pi\)
0.734910 + 0.678165i \(0.237224\pi\)
\(198\) 0 0
\(199\) 15.4335 1.09405 0.547026 0.837115i \(-0.315760\pi\)
0.547026 + 0.837115i \(0.315760\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 8.91314 0.627127
\(203\) 13.4909i 0.946878i
\(204\) 0 0
\(205\) 10.2850i 0.718335i
\(206\) −10.4023 −0.724764
\(207\) 0 0
\(208\) 3.78217i 0.262246i
\(209\) 8.29455 0.325600i 0.573746 0.0225222i
\(210\) 0 0
\(211\) 24.8821i 1.71295i −0.516185 0.856477i \(-0.672648\pi\)
0.516185 0.856477i \(-0.327352\pi\)
\(212\) 12.5452i 0.861607i
\(213\) 0 0
\(214\) −6.69760 −0.457838
\(215\) 0.325600 0.0222058
\(216\) 0 0
\(217\) 7.31371i 0.496487i
\(218\) 11.3313i 0.767449i
\(219\) 0 0
\(220\) 3.31407 0.130093i 0.223435 0.00877087i
\(221\) 3.13325i 0.210765i
\(222\) 0 0
\(223\) 9.05601 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(224\) 3.08861i 0.206367i
\(225\) 0 0
\(226\) 5.04801i 0.335789i
\(227\) −17.1365 −1.13739 −0.568694 0.822549i \(-0.692551\pi\)
−0.568694 + 0.822549i \(0.692551\pi\)
\(228\) 0 0
\(229\) 25.6682 1.69620 0.848100 0.529836i \(-0.177747\pi\)
0.848100 + 0.529836i \(0.177747\pi\)
\(230\) 2.69356 0.177608
\(231\) 0 0
\(232\) 4.36796 0.286771
\(233\) 16.1772 1.05981 0.529903 0.848058i \(-0.322228\pi\)
0.529903 + 0.848058i \(0.322228\pi\)
\(234\) 0 0
\(235\) 5.67440 0.370157
\(236\) 0.720655i 0.0469106i
\(237\) 0 0
\(238\) 2.55869i 0.165855i
\(239\) 15.6842 1.01452 0.507262 0.861792i \(-0.330658\pi\)
0.507262 + 0.861792i \(0.330658\pi\)
\(240\) 0 0
\(241\) 20.9730i 1.35099i −0.737363 0.675496i \(-0.763929\pi\)
0.737363 0.675496i \(-0.236071\pi\)
\(242\) 10.9662 0.862276i 0.704931 0.0554292i
\(243\) 0 0
\(244\) 3.98245i 0.254951i
\(245\) 2.53953i 0.162245i
\(246\) 0 0
\(247\) −9.46612 −0.602315
\(248\) 2.36796 0.150366
\(249\) 0 0
\(250\) 1.00000i 0.0632456i
\(251\) 20.8550i 1.31636i −0.752862 0.658178i \(-0.771327\pi\)
0.752862 0.658178i \(-0.228673\pi\)
\(252\) 0 0
\(253\) 8.92665 0.350413i 0.561214 0.0220303i
\(254\) 12.2602i 0.769272i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.77828i 0.547574i 0.961790 + 0.273787i \(0.0882763\pi\)
−0.961790 + 0.273787i \(0.911724\pi\)
\(258\) 0 0
\(259\) 8.40305i 0.522140i
\(260\) −3.78217 −0.234560
\(261\) 0 0
\(262\) 12.7703 0.788951
\(263\) −6.98084 −0.430457 −0.215229 0.976564i \(-0.569050\pi\)
−0.215229 + 0.976564i \(0.569050\pi\)
\(264\) 0 0
\(265\) −12.5452 −0.770645
\(266\) 7.73026 0.473973
\(267\) 0 0
\(268\) −9.52603 −0.581895
\(269\) 1.74936i 0.106661i −0.998577 0.0533303i \(-0.983016\pi\)
0.998577 0.0533303i \(-0.0169836\pi\)
\(270\) 0 0
\(271\) 20.6760i 1.25598i −0.778222 0.627989i \(-0.783878\pi\)
0.778222 0.627989i \(-0.216122\pi\)
\(272\) 0.828427 0.0502308
\(273\) 0 0
\(274\) 7.35607i 0.444396i
\(275\) 0.130093 + 3.31407i 0.00784491 + 0.199846i
\(276\) 0 0
\(277\) 28.7878i 1.72969i 0.502037 + 0.864846i \(0.332584\pi\)
−0.502037 + 0.864846i \(0.667416\pi\)
\(278\) 2.13487i 0.128041i
\(279\) 0 0
\(280\) 3.08861 0.184580
\(281\) 5.67991 0.338835 0.169418 0.985544i \(-0.445811\pi\)
0.169418 + 0.985544i \(0.445811\pi\)
\(282\) 0 0
\(283\) 32.8956i 1.95544i −0.209912 0.977720i \(-0.567318\pi\)
0.209912 0.977720i \(-0.432682\pi\)
\(284\) 2.96330i 0.175839i
\(285\) 0 0
\(286\) −12.5344 + 0.492034i −0.741174 + 0.0290946i
\(287\) 31.7664i 1.87511i
\(288\) 0 0
\(289\) −16.3137 −0.959630
\(290\) 4.36796i 0.256495i
\(291\) 0 0
\(292\) 0.367959i 0.0215332i
\(293\) −4.88585 −0.285434 −0.142717 0.989764i \(-0.545584\pi\)
−0.142717 + 0.989764i \(0.545584\pi\)
\(294\) 0 0
\(295\) −0.720655 −0.0419581
\(296\) −2.72065 −0.158135
\(297\) 0 0
\(298\) −22.0496 −1.27730
\(299\) −10.1875 −0.589159
\(300\) 0 0
\(301\) 1.00565 0.0579649
\(302\) 16.7958i 0.966491i
\(303\) 0 0
\(304\) 2.50283i 0.143547i
\(305\) −3.98245 −0.228035
\(306\) 0 0
\(307\) 10.3720i 0.591961i 0.955194 + 0.295981i \(0.0956464\pi\)
−0.955194 + 0.295981i \(0.904354\pi\)
\(308\) 10.2359 0.401807i 0.583244 0.0228951i
\(309\) 0 0
\(310\) 2.36796i 0.134491i
\(311\) 33.4408i 1.89625i −0.317893 0.948126i \(-0.602975\pi\)
0.317893 0.948126i \(-0.397025\pi\)
\(312\) 0 0
\(313\) −32.5023 −1.83714 −0.918569 0.395260i \(-0.870655\pi\)
−0.918569 + 0.395260i \(0.870655\pi\)
\(314\) 22.1191 1.24825
\(315\) 0 0
\(316\) 9.19639i 0.517337i
\(317\) 15.7416i 0.884135i −0.896982 0.442067i \(-0.854245\pi\)
0.896982 0.442067i \(-0.145755\pi\)
\(318\) 0 0
\(319\) 0.568241 + 14.4757i 0.0318154 + 0.810485i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 8.31936 0.463620
\(323\) 2.07341i 0.115368i
\(324\) 0 0
\(325\) 3.78217i 0.209797i
\(326\) −25.3059 −1.40157
\(327\) 0 0
\(328\) 10.2850 0.567894
\(329\) 17.5260 0.966241
\(330\) 0 0
\(331\) 27.8015 1.52811 0.764054 0.645153i \(-0.223206\pi\)
0.764054 + 0.645153i \(0.223206\pi\)
\(332\) 2.11732 0.116203
\(333\) 0 0
\(334\) −14.1095 −0.772039
\(335\) 9.52603i 0.520462i
\(336\) 0 0
\(337\) 4.67279i 0.254543i −0.991868 0.127271i \(-0.959378\pi\)
0.991868 0.127271i \(-0.0406219\pi\)
\(338\) 1.30483 0.0709732
\(339\) 0 0
\(340\) 0.828427i 0.0449278i
\(341\) 0.308055 + 7.84759i 0.0166821 + 0.424971i
\(342\) 0 0
\(343\) 13.7767i 0.743870i
\(344\) 0.325600i 0.0175552i
\(345\) 0 0
\(346\) 16.2020 0.871027
\(347\) 33.3849 1.79220 0.896098 0.443856i \(-0.146390\pi\)
0.896098 + 0.443856i \(0.146390\pi\)
\(348\) 0 0
\(349\) 5.48938i 0.293840i 0.989148 + 0.146920i \(0.0469360\pi\)
−0.989148 + 0.146920i \(0.953064\pi\)
\(350\) 3.08861i 0.165093i
\(351\) 0 0
\(352\) 0.130093 + 3.31407i 0.00693398 + 0.176641i
\(353\) 12.4078i 0.660402i 0.943911 + 0.330201i \(0.107117\pi\)
−0.943911 + 0.330201i \(0.892883\pi\)
\(354\) 0 0
\(355\) −2.96330 −0.157275
\(356\) 15.1558i 0.803255i
\(357\) 0 0
\(358\) 7.02871i 0.371479i
\(359\) −26.9322 −1.42143 −0.710715 0.703480i \(-0.751628\pi\)
−0.710715 + 0.703480i \(0.751628\pi\)
\(360\) 0 0
\(361\) 12.7359 0.670308
\(362\) −8.64341 −0.454287
\(363\) 0 0
\(364\) −11.6817 −0.612286
\(365\) −0.367959 −0.0192598
\(366\) 0 0
\(367\) 10.7590 0.561614 0.280807 0.959764i \(-0.409398\pi\)
0.280807 + 0.959764i \(0.409398\pi\)
\(368\) 2.69356i 0.140411i
\(369\) 0 0
\(370\) 2.72065i 0.141440i
\(371\) −38.7472 −2.01166
\(372\) 0 0
\(373\) 10.3600i 0.536419i 0.963361 + 0.268209i \(0.0864319\pi\)
−0.963361 + 0.268209i \(0.913568\pi\)
\(374\) 0.107773 + 2.74547i 0.00557279 + 0.141965i
\(375\) 0 0
\(376\) 5.67440i 0.292635i
\(377\) 16.5204i 0.850842i
\(378\) 0 0
\(379\) 20.8206 1.06948 0.534742 0.845015i \(-0.320409\pi\)
0.534742 + 0.845015i \(0.320409\pi\)
\(380\) −2.50283 −0.128392
\(381\) 0 0
\(382\) 15.6145i 0.798907i
\(383\) 15.6010i 0.797173i 0.917131 + 0.398587i \(0.130499\pi\)
−0.917131 + 0.398587i \(0.869501\pi\)
\(384\) 0 0
\(385\) 0.401807 + 10.2359i 0.0204780 + 0.521669i
\(386\) 5.67036i 0.288614i
\(387\) 0 0
\(388\) −8.23713 −0.418177
\(389\) 24.3928i 1.23676i 0.785878 + 0.618381i \(0.212211\pi\)
−0.785878 + 0.618381i \(0.787789\pi\)
\(390\) 0 0
\(391\) 2.23142i 0.112848i
\(392\) 2.53953 0.128266
\(393\) 0 0
\(394\) −20.6299 −1.03932
\(395\) −9.19639 −0.462720
\(396\) 0 0
\(397\) 24.5931 1.23429 0.617145 0.786849i \(-0.288289\pi\)
0.617145 + 0.786849i \(0.288289\pi\)
\(398\) −15.4335 −0.773612
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 19.9459i 0.996050i 0.867163 + 0.498025i \(0.165941\pi\)
−0.867163 + 0.498025i \(0.834059\pi\)
\(402\) 0 0
\(403\) 8.95603i 0.446132i
\(404\) −8.91314 −0.443445
\(405\) 0 0
\(406\) 13.4909i 0.669544i
\(407\) −0.353938 9.01645i −0.0175441 0.446929i
\(408\) 0 0
\(409\) 22.9322i 1.13393i 0.823743 + 0.566963i \(0.191882\pi\)
−0.823743 + 0.566963i \(0.808118\pi\)
\(410\) 10.2850i 0.507940i
\(411\) 0 0
\(412\) 10.4023 0.512486
\(413\) −2.22582 −0.109526
\(414\) 0 0
\(415\) 2.11732i 0.103935i
\(416\) 3.78217i 0.185436i
\(417\) 0 0
\(418\) −8.29455 + 0.325600i −0.405700 + 0.0159256i
\(419\) 10.4622i 0.511113i −0.966794 0.255557i \(-0.917741\pi\)
0.966794 0.255557i \(-0.0822587\pi\)
\(420\) 0 0
\(421\) 4.04640 0.197209 0.0986047 0.995127i \(-0.468562\pi\)
0.0986047 + 0.995127i \(0.468562\pi\)
\(422\) 24.8821i 1.21124i
\(423\) 0 0
\(424\) 12.5452i 0.609248i
\(425\) −0.828427 −0.0401846
\(426\) 0 0
\(427\) −12.3003 −0.595251
\(428\) 6.69760 0.323741
\(429\) 0 0
\(430\) −0.325600 −0.0157018
\(431\) 25.9266 1.24884 0.624420 0.781089i \(-0.285335\pi\)
0.624420 + 0.781089i \(0.285335\pi\)
\(432\) 0 0
\(433\) −2.10953 −0.101378 −0.0506888 0.998714i \(-0.516142\pi\)
−0.0506888 + 0.998714i \(0.516142\pi\)
\(434\) 7.31371i 0.351069i
\(435\) 0 0
\(436\) 11.3313i 0.542669i
\(437\) −6.74151 −0.322490
\(438\) 0 0
\(439\) 18.5374i 0.884741i 0.896832 + 0.442371i \(0.145862\pi\)
−0.896832 + 0.442371i \(0.854138\pi\)
\(440\) −3.31407 + 0.130093i −0.157992 + 0.00620194i
\(441\) 0 0
\(442\) 3.13325i 0.149034i
\(443\) 12.3545i 0.586978i −0.955962 0.293489i \(-0.905184\pi\)
0.955962 0.293489i \(-0.0948164\pi\)
\(444\) 0 0
\(445\) −15.1558 −0.718453
\(446\) −9.05601 −0.428814
\(447\) 0 0
\(448\) 3.08861i 0.145923i
\(449\) 13.8038i 0.651440i 0.945466 + 0.325720i \(0.105607\pi\)
−0.945466 + 0.325720i \(0.894393\pi\)
\(450\) 0 0
\(451\) 1.33801 + 34.0852i 0.0630043 + 1.60501i
\(452\) 5.04801i 0.237439i
\(453\) 0 0
\(454\) 17.1365 0.804255
\(455\) 11.6817i 0.547645i
\(456\) 0 0
\(457\) 19.1964i 0.897969i 0.893540 + 0.448985i \(0.148214\pi\)
−0.893540 + 0.448985i \(0.851786\pi\)
\(458\) −25.6682 −1.19939
\(459\) 0 0
\(460\) −2.69356 −0.125588
\(461\) −36.3218 −1.69168 −0.845839 0.533439i \(-0.820899\pi\)
−0.845839 + 0.533439i \(0.820899\pi\)
\(462\) 0 0
\(463\) −13.6473 −0.634244 −0.317122 0.948385i \(-0.602716\pi\)
−0.317122 + 0.948385i \(0.602716\pi\)
\(464\) −4.36796 −0.202777
\(465\) 0 0
\(466\) −16.1772 −0.749396
\(467\) 5.40622i 0.250170i 0.992146 + 0.125085i \(0.0399203\pi\)
−0.992146 + 0.125085i \(0.960080\pi\)
\(468\) 0 0
\(469\) 29.4222i 1.35859i
\(470\) −5.67440 −0.261741
\(471\) 0 0
\(472\) 0.720655i 0.0331708i
\(473\) −1.07906 + 0.0423583i −0.0496154 + 0.00194764i
\(474\) 0 0
\(475\) 2.50283i 0.114838i
\(476\) 2.55869i 0.117277i
\(477\) 0 0
\(478\) −15.6842 −0.717376
\(479\) 4.67030 0.213391 0.106696 0.994292i \(-0.465973\pi\)
0.106696 + 0.994292i \(0.465973\pi\)
\(480\) 0 0
\(481\) 10.2900i 0.469183i
\(482\) 20.9730i 0.955296i
\(483\) 0 0
\(484\) −10.9662 + 0.862276i −0.498461 + 0.0391943i
\(485\) 8.23713i 0.374029i
\(486\) 0 0
\(487\) −10.4271 −0.472499 −0.236249 0.971692i \(-0.575918\pi\)
−0.236249 + 0.971692i \(0.575918\pi\)
\(488\) 3.98245i 0.180277i
\(489\) 0 0
\(490\) 2.53953i 0.114724i
\(491\) −0.434928 −0.0196280 −0.00981401 0.999952i \(-0.503124\pi\)
−0.00981401 + 0.999952i \(0.503124\pi\)
\(492\) 0 0
\(493\) −3.61854 −0.162971
\(494\) 9.46612 0.425901
\(495\) 0 0
\(496\) −2.36796 −0.106324
\(497\) −9.15247 −0.410545
\(498\) 0 0
\(499\) 11.3002 0.505867 0.252933 0.967484i \(-0.418605\pi\)
0.252933 + 0.967484i \(0.418605\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 0 0
\(502\) 20.8550i 0.930804i
\(503\) 7.07906 0.315640 0.157820 0.987468i \(-0.449553\pi\)
0.157820 + 0.987468i \(0.449553\pi\)
\(504\) 0 0
\(505\) 8.91314i 0.396630i
\(506\) −8.92665 + 0.350413i −0.396838 + 0.0155778i
\(507\) 0 0
\(508\) 12.2602i 0.543958i
\(509\) 5.51472i 0.244436i −0.992503 0.122218i \(-0.960999\pi\)
0.992503 0.122218i \(-0.0390006\pi\)
\(510\) 0 0
\(511\) −1.13648 −0.0502750
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 8.77828i 0.387193i
\(515\) 10.4023i 0.458381i
\(516\) 0 0
\(517\) −18.8054 + 0.738200i −0.827059 + 0.0324660i
\(518\) 8.40305i 0.369209i
\(519\) 0 0
\(520\) 3.78217 0.165859
\(521\) 15.4255i 0.675804i 0.941181 + 0.337902i \(0.109717\pi\)
−0.941181 + 0.337902i \(0.890283\pi\)
\(522\) 0 0
\(523\) 35.8629i 1.56818i 0.620649 + 0.784088i \(0.286869\pi\)
−0.620649 + 0.784088i \(0.713131\pi\)
\(524\) −12.7703 −0.557872
\(525\) 0 0
\(526\) 6.98084 0.304379
\(527\) −1.96168 −0.0854522
\(528\) 0 0
\(529\) 15.7447 0.684554
\(530\) 12.5452 0.544928
\(531\) 0 0
\(532\) −7.73026 −0.335149
\(533\) 38.8996i 1.68493i
\(534\) 0 0
\(535\) 6.69760i 0.289562i
\(536\) 9.52603 0.411462
\(537\) 0 0
\(538\) 1.74936i 0.0754204i
\(539\) 0.330375 + 8.41619i 0.0142303 + 0.362511i
\(540\) 0 0
\(541\) 13.1380i 0.564848i −0.959290 0.282424i \(-0.908861\pi\)
0.959290 0.282424i \(-0.0911386\pi\)
\(542\) 20.6760i 0.888111i
\(543\) 0 0
\(544\) −0.828427 −0.0355185
\(545\) 11.3313 0.485378
\(546\) 0 0
\(547\) 28.3401i 1.21174i −0.795565 0.605868i \(-0.792826\pi\)
0.795565 0.605868i \(-0.207174\pi\)
\(548\) 7.35607i 0.314236i
\(549\) 0 0
\(550\) −0.130093 3.31407i −0.00554719 0.141313i
\(551\) 10.9322i 0.465729i
\(552\) 0 0
\(553\) −28.4041 −1.20786
\(554\) 28.7878i 1.22308i
\(555\) 0 0
\(556\) 2.13487i 0.0905386i
\(557\) −25.1996 −1.06774 −0.533871 0.845566i \(-0.679263\pi\)
−0.533871 + 0.845566i \(0.679263\pi\)
\(558\) 0 0
\(559\) 1.23148 0.0520859
\(560\) −3.08861 −0.130518
\(561\) 0 0
\(562\) −5.67991 −0.239593
\(563\) 25.7664 1.08592 0.542962 0.839757i \(-0.317303\pi\)
0.542962 + 0.839757i \(0.317303\pi\)
\(564\) 0 0
\(565\) −5.04801 −0.212371
\(566\) 32.8956i 1.38271i
\(567\) 0 0
\(568\) 2.96330i 0.124337i
\(569\) −31.3212 −1.31305 −0.656526 0.754303i \(-0.727975\pi\)
−0.656526 + 0.754303i \(0.727975\pi\)
\(570\) 0 0
\(571\) 39.9396i 1.67142i 0.549172 + 0.835710i \(0.314943\pi\)
−0.549172 + 0.835710i \(0.685057\pi\)
\(572\) 12.5344 0.492034i 0.524089 0.0205730i
\(573\) 0 0
\(574\) 31.7664i 1.32590i
\(575\) 2.69356i 0.112329i
\(576\) 0 0
\(577\) −20.8532 −0.868132 −0.434066 0.900881i \(-0.642921\pi\)
−0.434066 + 0.900881i \(0.642921\pi\)
\(578\) 16.3137 0.678561
\(579\) 0 0
\(580\) 4.36796i 0.181370i
\(581\) 6.53959i 0.271308i
\(582\) 0 0
\(583\) 41.5757 1.63204i 1.72189 0.0675922i
\(584\) 0.367959i 0.0152262i
\(585\) 0 0
\(586\) 4.88585 0.201832
\(587\) 14.3467i 0.592150i −0.955165 0.296075i \(-0.904322\pi\)
0.955165 0.296075i \(-0.0956778\pi\)
\(588\) 0 0
\(589\) 5.92659i 0.244201i
\(590\) 0.720655 0.0296689
\(591\) 0 0
\(592\) 2.72065 0.111818
\(593\) −5.73026 −0.235314 −0.117657 0.993054i \(-0.537538\pi\)
−0.117657 + 0.993054i \(0.537538\pi\)
\(594\) 0 0
\(595\) −2.55869 −0.104896
\(596\) 22.0496 0.903188
\(597\) 0 0
\(598\) 10.1875 0.416598
\(599\) 5.52199i 0.225622i −0.993616 0.112811i \(-0.964015\pi\)
0.993616 0.112811i \(-0.0359855\pi\)
\(600\) 0 0
\(601\) 13.4197i 0.547402i −0.961815 0.273701i \(-0.911752\pi\)
0.961815 0.273701i \(-0.0882479\pi\)
\(602\) −1.00565 −0.0409874
\(603\) 0 0
\(604\) 16.7958i 0.683412i
\(605\) −0.862276 10.9662i −0.0350565 0.445837i
\(606\) 0 0
\(607\) 33.9858i 1.37944i 0.724076 + 0.689720i \(0.242266\pi\)
−0.724076 + 0.689720i \(0.757734\pi\)
\(608\) 2.50283i 0.101503i
\(609\) 0 0
\(610\) 3.98245 0.161245
\(611\) 21.4616 0.868242
\(612\) 0 0
\(613\) 26.7304i 1.07963i 0.841783 + 0.539815i \(0.181506\pi\)
−0.841783 + 0.539815i \(0.818494\pi\)
\(614\) 10.3720i 0.418580i
\(615\) 0 0
\(616\) −10.2359 + 0.401807i −0.412416 + 0.0161893i
\(617\) 30.9906i 1.24763i 0.781570 + 0.623817i \(0.214419\pi\)
−0.781570 + 0.623817i \(0.785581\pi\)
\(618\) 0 0
\(619\) 12.1198 0.487136 0.243568 0.969884i \(-0.421682\pi\)
0.243568 + 0.969884i \(0.421682\pi\)
\(620\) 2.36796i 0.0950995i
\(621\) 0 0
\(622\) 33.4408i 1.34085i
\(623\) −46.8104 −1.87542
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 32.5023 1.29905
\(627\) 0 0
\(628\) −22.1191 −0.882647
\(629\) 2.25386 0.0898674
\(630\) 0 0
\(631\) 16.0744 0.639913 0.319957 0.947432i \(-0.396332\pi\)
0.319957 + 0.947432i \(0.396332\pi\)
\(632\) 9.19639i 0.365813i
\(633\) 0 0
\(634\) 15.7416i 0.625178i
\(635\) −12.2602 −0.486531
\(636\) 0 0
\(637\) 9.60495i 0.380562i
\(638\) −0.568241 14.4757i −0.0224969 0.573100i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) 31.4560i 1.24244i 0.783637 + 0.621220i \(0.213362\pi\)
−0.783637 + 0.621220i \(0.786638\pi\)
\(642\) 0 0
\(643\) 20.1038 0.792817 0.396409 0.918074i \(-0.370256\pi\)
0.396409 + 0.918074i \(0.370256\pi\)
\(644\) −8.31936 −0.327829
\(645\) 0 0
\(646\) 2.07341i 0.0815772i
\(647\) 19.7208i 0.775305i −0.921806 0.387652i \(-0.873286\pi\)
0.921806 0.387652i \(-0.126714\pi\)
\(648\) 0 0
\(649\) 2.38830 0.0937521i 0.0937490 0.00368009i
\(650\) 3.78217i 0.148349i
\(651\) 0 0
\(652\) 25.3059 0.991056
\(653\) 42.0993i 1.64747i −0.566974 0.823736i \(-0.691886\pi\)
0.566974 0.823736i \(-0.308114\pi\)
\(654\) 0 0
\(655\) 12.7703i 0.498976i
\(656\) −10.2850 −0.401562
\(657\) 0 0
\(658\) −17.5260 −0.683236
\(659\) 18.5141 0.721205 0.360602 0.932720i \(-0.382571\pi\)
0.360602 + 0.932720i \(0.382571\pi\)
\(660\) 0 0
\(661\) 45.5789 1.77281 0.886406 0.462908i \(-0.153194\pi\)
0.886406 + 0.462908i \(0.153194\pi\)
\(662\) −27.8015 −1.08053
\(663\) 0 0
\(664\) −2.11732 −0.0821681
\(665\) 7.73026i 0.299767i
\(666\) 0 0
\(667\) 11.7654i 0.455556i
\(668\) 14.1095 0.545914
\(669\) 0 0
\(670\) 9.52603i 0.368022i
\(671\) 13.1981 0.518090i 0.509509 0.0200006i
\(672\) 0 0
\(673\) 24.5374i 0.945847i −0.881104 0.472923i \(-0.843199\pi\)
0.881104 0.472923i \(-0.156801\pi\)
\(674\) 4.67279i 0.179989i
\(675\) 0 0
\(676\) −1.30483 −0.0501857
\(677\) −17.3162 −0.665515 −0.332758 0.943012i \(-0.607979\pi\)
−0.332758 + 0.943012i \(0.607979\pi\)
\(678\) 0 0
\(679\) 25.4413i 0.976348i
\(680\) 0.828427i 0.0317687i
\(681\) 0 0
\(682\) −0.308055 7.84759i −0.0117960 0.300500i
\(683\) 28.8397i 1.10352i 0.834002 + 0.551761i \(0.186044\pi\)
−0.834002 + 0.551761i \(0.813956\pi\)
\(684\) 0 0
\(685\) −7.35607 −0.281061
\(686\) 13.7767i 0.525995i
\(687\) 0 0
\(688\) 0.325600i 0.0124134i
\(689\) −47.4481 −1.80763
\(690\) 0 0
\(691\) −24.3059 −0.924638 −0.462319 0.886714i \(-0.652983\pi\)
−0.462319 + 0.886714i \(0.652983\pi\)
\(692\) −16.2020 −0.615909
\(693\) 0 0
\(694\) −33.3849 −1.26727
\(695\) 2.13487 0.0809802
\(696\) 0 0
\(697\) −8.52037 −0.322732
\(698\) 5.48938i 0.207776i
\(699\) 0 0
\(700\) 3.08861i 0.116739i
\(701\) −1.85538 −0.0700767 −0.0350384 0.999386i \(-0.511155\pi\)
−0.0350384 + 0.999386i \(0.511155\pi\)
\(702\) 0 0
\(703\) 6.80933i 0.256819i
\(704\) −0.130093 3.31407i −0.00490307 0.124904i
\(705\) 0 0
\(706\) 12.4078i 0.466975i
\(707\) 27.5293i 1.03534i
\(708\) 0 0
\(709\) 18.1198 0.680504 0.340252 0.940334i \(-0.389488\pi\)
0.340252 + 0.940334i \(0.389488\pi\)
\(710\) 2.96330 0.111210
\(711\) 0 0
\(712\) 15.1558i 0.567987i
\(713\) 6.37824i 0.238867i
\(714\) 0 0
\(715\) 0.492034 + 12.5344i 0.0184010 + 0.468760i
\(716\) 7.02871i 0.262675i
\(717\) 0 0
\(718\) 26.9322 1.00510
\(719\) 15.1788i 0.566075i 0.959109 + 0.283038i \(0.0913421\pi\)
−0.959109 + 0.283038i \(0.908658\pi\)
\(720\) 0 0
\(721\) 32.1287i 1.19654i
\(722\) −12.7359 −0.473980
\(723\) 0 0
\(724\) 8.64341 0.321230
\(725\) 4.36796 0.162222
\(726\) 0 0
\(727\) 9.92732 0.368184 0.184092 0.982909i \(-0.441066\pi\)
0.184092 + 0.982909i \(0.441066\pi\)
\(728\) 11.6817 0.432951
\(729\) 0 0
\(730\) 0.367959 0.0136188
\(731\) 0.269736i 0.00997655i
\(732\) 0 0
\(733\) 17.6355i 0.651381i −0.945476 0.325691i \(-0.894403\pi\)
0.945476 0.325691i \(-0.105597\pi\)
\(734\) −10.7590 −0.397121
\(735\) 0 0
\(736\) 2.69356i 0.0992859i
\(737\) 1.23927 + 31.5699i 0.0456491 + 1.16289i
\(738\) 0 0
\(739\) 16.7808i 0.617290i −0.951177 0.308645i \(-0.900124\pi\)
0.951177 0.308645i \(-0.0998755\pi\)
\(740\) 2.72065i 0.100013i
\(741\) 0 0
\(742\) 38.7472 1.42246
\(743\) 28.1343 1.03215 0.516074 0.856544i \(-0.327393\pi\)
0.516074 + 0.856544i \(0.327393\pi\)
\(744\) 0 0
\(745\) 22.0496i 0.807836i
\(746\) 10.3600i 0.379305i
\(747\) 0 0
\(748\) −0.107773 2.74547i −0.00394056 0.100384i
\(749\) 20.6863i 0.755861i
\(750\) 0 0
\(751\) −35.8128 −1.30683 −0.653413 0.757001i \(-0.726664\pi\)
−0.653413 + 0.757001i \(0.726664\pi\)
\(752\) 5.67440i 0.206924i
\(753\) 0 0
\(754\) 16.5204i 0.601636i
\(755\) 16.7958 0.611263
\(756\) 0 0
\(757\) 5.39915 0.196236 0.0981178 0.995175i \(-0.468718\pi\)
0.0981178 + 0.995175i \(0.468718\pi\)
\(758\) −20.8206 −0.756239
\(759\) 0 0
\(760\) 2.50283 0.0907871
\(761\) 46.3888 1.68159 0.840797 0.541351i \(-0.182087\pi\)
0.840797 + 0.541351i \(0.182087\pi\)
\(762\) 0 0
\(763\) 34.9979 1.26701
\(764\) 15.6145i 0.564913i
\(765\) 0 0
\(766\) 15.6010i 0.563687i
\(767\) −2.72564 −0.0984171
\(768\) 0 0
\(769\) 0.838705i 0.0302445i 0.999886 + 0.0151222i \(0.00481374\pi\)
−0.999886 + 0.0151222i \(0.995186\pi\)
\(770\) −0.401807 10.2359i −0.0144801 0.368876i
\(771\) 0 0
\(772\) 5.67036i 0.204081i
\(773\) 4.12304i 0.148295i −0.997247 0.0741476i \(-0.976376\pi\)
0.997247 0.0741476i \(-0.0236236\pi\)
\(774\) 0 0
\(775\) 2.36796 0.0850596
\(776\) 8.23713 0.295696
\(777\) 0 0
\(778\) 24.3928i 0.874523i
\(779\) 25.7416i 0.922287i
\(780\) 0 0
\(781\) 9.82057 0.385504i 0.351408 0.0137944i
\(782\) 2.23142i 0.0797953i
\(783\) 0 0
\(784\) −2.53953 −0.0906976
\(785\) 22.1191i 0.789464i
\(786\) 0 0
\(787\) 35.7130i 1.27303i −0.771264 0.636516i \(-0.780375\pi\)
0.771264 0.636516i \(-0.219625\pi\)
\(788\) 20.6299 0.734910
\(789\) 0 0
\(790\) 9.19639 0.327193
\(791\) −15.5914 −0.554365
\(792\) 0 0
\(793\) −15.0623 −0.534879
\(794\) −24.5931 −0.872775
\(795\) 0 0
\(796\) 15.4335 0.547026
\(797\) 3.89398i 0.137932i −0.997619 0.0689660i \(-0.978030\pi\)
0.997619 0.0689660i \(-0.0219700\pi\)
\(798\) 0 0
\(799\) 4.70083i 0.166303i
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 19.9459i 0.704314i
\(803\) 1.21944 0.0478689i 0.0430332 0.00168926i
\(804\) 0 0
\(805\) 8.31936i 0.293219i
\(806\) 8.95603i 0.315463i
\(807\) 0 0
\(808\) 8.91314 0.313563
\(809\) −0.767052 −0.0269681 −0.0134841 0.999909i \(-0.504292\pi\)
−0.0134841 + 0.999909i \(0.504292\pi\)
\(810\) 0 0
\(811\) 52.4159i 1.84057i 0.391247 + 0.920286i \(0.372044\pi\)
−0.391247 + 0.920286i \(0.627956\pi\)
\(812\) 13.4909i 0.473439i
\(813\) 0 0
\(814\) 0.353938 + 9.01645i 0.0124055 + 0.316026i
\(815\) 25.3059i 0.886428i
\(816\) 0 0
\(817\) 0.814921 0.0285105
\(818\) 22.9322i 0.801807i
\(819\) 0 0
\(820\) 10.2850i 0.359168i
\(821\) 40.0418 1.39747 0.698735 0.715381i \(-0.253747\pi\)
0.698735 + 0.715381i \(0.253747\pi\)
\(822\) 0 0
\(823\) −40.4158 −1.40881 −0.704404 0.709800i \(-0.748785\pi\)
−0.704404 + 0.709800i \(0.748785\pi\)
\(824\) −10.4023 −0.362382
\(825\) 0 0
\(826\) 2.22582 0.0774463
\(827\) 11.8749 0.412930 0.206465 0.978454i \(-0.433804\pi\)
0.206465 + 0.978454i \(0.433804\pi\)
\(828\) 0 0
\(829\) 14.6132 0.507536 0.253768 0.967265i \(-0.418330\pi\)
0.253768 + 0.967265i \(0.418330\pi\)
\(830\) 2.11732i 0.0734933i
\(831\) 0 0
\(832\) 3.78217i 0.131123i
\(833\) −2.10382 −0.0728929
\(834\) 0 0
\(835\) 14.1095i 0.488280i
\(836\) 8.29455 0.325600i 0.286873 0.0112611i
\(837\) 0 0
\(838\) 10.4622i 0.361412i
\(839\) 13.7917i 0.476143i 0.971248 + 0.238072i \(0.0765153\pi\)
−0.971248 + 0.238072i \(0.923485\pi\)
\(840\) 0 0
\(841\) −9.92094 −0.342101
\(842\) −4.04640 −0.139448
\(843\) 0 0
\(844\) 24.8821i 0.856477i
\(845\) 1.30483i 0.0448874i
\(846\) 0 0
\(847\) −2.66324 33.8702i −0.0915099 1.16379i
\(848\) 12.5452i 0.430803i
\(849\) 0 0
\(850\) 0.828427 0.0284148
\(851\) 7.32824i 0.251209i
\(852\) 0 0
\(853\) 3.96719i 0.135834i 0.997691 + 0.0679170i \(0.0216353\pi\)
−0.997691 + 0.0679170i \(0.978365\pi\)
\(854\) 12.3003 0.420906
\(855\) 0 0
\(856\) −6.69760 −0.228919
\(857\) 33.5994 1.14773 0.573867 0.818948i \(-0.305442\pi\)
0.573867 + 0.818948i \(0.305442\pi\)
\(858\) 0 0
\(859\) −29.4799 −1.00584 −0.502921 0.864332i \(-0.667741\pi\)
−0.502921 + 0.864332i \(0.667741\pi\)
\(860\) 0.325600 0.0111029
\(861\) 0 0
\(862\) −25.9266 −0.883063
\(863\) 15.8491i 0.539511i −0.962929 0.269756i \(-0.913057\pi\)
0.962929 0.269756i \(-0.0869429\pi\)
\(864\) 0 0
\(865\) 16.2020i 0.550886i
\(866\) 2.10953 0.0716847
\(867\) 0 0
\(868\) 7.31371i 0.248243i
\(869\) 30.4775 1.19639i 1.03388 0.0405846i
\(870\) 0 0
\(871\) 36.0291i 1.22080i
\(872\) 11.3313i 0.383725i
\(873\) 0 0
\(874\) 6.74151 0.228035
\(875\) 3.08861 0.104414
\(876\) 0 0
\(877\) 41.9243i 1.41568i −0.706371 0.707842i \(-0.749669\pi\)
0.706371 0.707842i \(-0.250331\pi\)
\(878\) 18.5374i 0.625607i
\(879\) 0 0
\(880\) 3.31407 0.130093i 0.111717 0.00438544i
\(881\) 14.5206i 0.489211i 0.969623 + 0.244605i \(0.0786584\pi\)
−0.969623 + 0.244605i \(0.921342\pi\)
\(882\) 0 0
\(883\) −12.4357 −0.418493 −0.209247 0.977863i \(-0.567101\pi\)
−0.209247 + 0.977863i \(0.567101\pi\)
\(884\) 3.13325i 0.105383i
\(885\) 0 0
\(886\) 12.3545i 0.415056i
\(887\) −51.5193 −1.72985 −0.864924 0.501903i \(-0.832633\pi\)
−0.864924 + 0.501903i \(0.832633\pi\)
\(888\) 0 0
\(889\) −37.8670 −1.27002
\(890\) 15.1558 0.508023
\(891\) 0 0
\(892\) 9.05601 0.303218
\(893\) 14.2020 0.475253
\(894\) 0 0
\(895\) 7.02871 0.234944
\(896\) 3.08861i 0.103183i
\(897\) 0 0
\(898\) 13.8038i 0.460637i
\(899\) 10.3431 0.344963
\(900\) 0 0
\(901\) 10.3928i 0.346233i
\(902\) −1.33801 34.0852i −0.0445508 1.13491i
\(903\) 0 0
\(904\) 5.04801i 0.167894i
\(905\) 8.64341i 0.287317i
\(906\) 0 0
\(907\) −24.6242 −0.817633 −0.408816 0.912617i \(-0.634058\pi\)
−0.408816 + 0.912617i \(0.634058\pi\)
\(908\) −17.1365 −0.568694
\(909\) 0 0
\(910\) 11.6817i 0.387243i
\(911\) 31.4756i 1.04283i −0.853302 0.521416i \(-0.825404\pi\)
0.853302 0.521416i \(-0.174596\pi\)
\(912\) 0 0
\(913\) −0.275449 7.01696i −0.00911603 0.232228i
\(914\) 19.1964i 0.634960i
\(915\) 0 0
\(916\) 25.6682 0.848100
\(917\) 39.4425i 1.30250i
\(918\) 0 0
\(919\) 36.0634i 1.18962i −0.803865 0.594811i \(-0.797227\pi\)
0.803865 0.594811i \(-0.202773\pi\)
\(920\) 2.69356 0.0888040
\(921\) 0 0
\(922\) 36.3218 1.19620
\(923\) −11.2077 −0.368906
\(924\) 0 0
\(925\) −2.72065 −0.0894546
\(926\) 13.6473 0.448478
\(927\) 0 0
\(928\) 4.36796 0.143385
\(929\) 8.01902i 0.263095i −0.991310 0.131548i \(-0.958005\pi\)
0.991310 0.131548i \(-0.0419946\pi\)
\(930\) 0 0
\(931\) 6.35601i 0.208310i
\(932\) 16.1772 0.529903
\(933\) 0 0
\(934\) 5.40622i 0.176897i
\(935\) 2.74547 0.107773i 0.0897864 0.00352454i
\(936\) 0 0
\(937\) 3.31122i 0.108173i 0.998536 + 0.0540865i \(0.0172247\pi\)
−0.998536 + 0.0540865i \(0.982775\pi\)
\(938\) 29.4222i 0.960669i
\(939\) 0 0
\(940\) 5.67440 0.185079
\(941\) 52.5352 1.71260 0.856299 0.516480i \(-0.172758\pi\)
0.856299 + 0.516480i \(0.172758\pi\)
\(942\) 0 0
\(943\) 27.7033i 0.902142i
\(944\) 0.720655i 0.0234553i
\(945\) 0 0
\(946\) 1.07906 0.0423583i 0.0350834 0.00137719i
\(947\) 22.7472i 0.739185i 0.929194 + 0.369593i \(0.120503\pi\)
−0.929194 + 0.369593i \(0.879497\pi\)
\(948\) 0 0
\(949\) −1.39168 −0.0451759
\(950\) 2.50283i 0.0812024i
\(951\) 0 0
\(952\) 2.55869i 0.0829277i
\(953\) 16.6976 0.540888 0.270444 0.962736i \(-0.412829\pi\)
0.270444 + 0.962736i \(0.412829\pi\)
\(954\) 0 0
\(955\) −15.6145 −0.505273
\(956\) 15.6842 0.507262
\(957\) 0 0
\(958\) −4.67030 −0.150891
\(959\) −22.7200 −0.733669
\(960\) 0 0
\(961\) −25.3928 −0.819122
\(962\) 10.2900i 0.331762i
\(963\) 0 0
\(964\) 20.9730i 0.675496i
\(965\) −5.67036 −0.182535
\(966\) 0 0
\(967\) 31.4115i 1.01013i −0.863083 0.505063i \(-0.831469\pi\)
0.863083 0.505063i \(-0.168531\pi\)
\(968\) 10.9662 0.862276i 0.352465 0.0277146i
\(969\) 0 0
\(970\) 8.23713i 0.264478i
\(971\) 12.3662i 0.396850i −0.980116 0.198425i \(-0.936417\pi\)
0.980116 0.198425i \(-0.0635827\pi\)
\(972\) 0 0
\(973\) 6.59378 0.211387
\(974\) 10.4271 0.334107
\(975\) 0 0
\(976\) 3.98245i 0.127475i
\(977\) 49.0515i 1.56930i 0.619941 + 0.784649i \(0.287157\pi\)
−0.619941 + 0.784649i \(0.712843\pi\)
\(978\) 0 0
\(979\) 50.2274 1.97166i 1.60527 0.0630146i
\(980\) 2.53953i 0.0811224i
\(981\) 0 0
\(982\) 0.434928 0.0138791
\(983\) 42.1487i 1.34433i 0.740400 + 0.672167i \(0.234636\pi\)
−0.740400 + 0.672167i \(0.765364\pi\)
\(984\) 0 0
\(985\) 20.6299i 0.657323i
\(986\) 3.61854 0.115238
\(987\) 0 0
\(988\) −9.46612 −0.301157
\(989\) 0.877024 0.0278877
\(990\) 0 0
\(991\) −23.4122 −0.743714 −0.371857 0.928290i \(-0.621279\pi\)
−0.371857 + 0.928290i \(0.621279\pi\)
\(992\) 2.36796 0.0751828
\(993\) 0 0
\(994\) 9.15247 0.290299
\(995\) 15.4335i 0.489275i
\(996\) 0 0
\(997\) 21.6436i 0.685458i −0.939434 0.342729i \(-0.888649\pi\)
0.939434 0.342729i \(-0.111351\pi\)
\(998\) −11.3002 −0.357702
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.d.a.791.8 yes 8
3.2 odd 2 990.2.d.b.791.4 yes 8
4.3 odd 2 7920.2.f.a.3761.5 8
5.2 odd 4 4950.2.f.d.4949.1 8
5.3 odd 4 4950.2.f.e.4949.8 8
5.4 even 2 4950.2.d.m.4751.2 8
11.10 odd 2 990.2.d.b.791.5 yes 8
12.11 even 2 7920.2.f.b.3761.1 8
15.2 even 4 4950.2.f.c.4949.5 8
15.8 even 4 4950.2.f.f.4949.4 8
15.14 odd 2 4950.2.d.h.4751.2 8
33.32 even 2 inner 990.2.d.a.791.1 8
44.43 even 2 7920.2.f.b.3761.8 8
55.32 even 4 4950.2.f.f.4949.8 8
55.43 even 4 4950.2.f.c.4949.1 8
55.54 odd 2 4950.2.d.h.4751.7 8
132.131 odd 2 7920.2.f.a.3761.4 8
165.32 odd 4 4950.2.f.e.4949.4 8
165.98 odd 4 4950.2.f.d.4949.5 8
165.164 even 2 4950.2.d.m.4751.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.d.a.791.1 8 33.32 even 2 inner
990.2.d.a.791.8 yes 8 1.1 even 1 trivial
990.2.d.b.791.4 yes 8 3.2 odd 2
990.2.d.b.791.5 yes 8 11.10 odd 2
4950.2.d.h.4751.2 8 15.14 odd 2
4950.2.d.h.4751.7 8 55.54 odd 2
4950.2.d.m.4751.2 8 5.4 even 2
4950.2.d.m.4751.7 8 165.164 even 2
4950.2.f.c.4949.1 8 55.43 even 4
4950.2.f.c.4949.5 8 15.2 even 4
4950.2.f.d.4949.1 8 5.2 odd 4
4950.2.f.d.4949.5 8 165.98 odd 4
4950.2.f.e.4949.4 8 165.32 odd 4
4950.2.f.e.4949.8 8 5.3 odd 4
4950.2.f.f.4949.4 8 15.8 even 4
4950.2.f.f.4949.8 8 55.32 even 4
7920.2.f.a.3761.4 8 132.131 odd 2
7920.2.f.a.3761.5 8 4.3 odd 2
7920.2.f.b.3761.1 8 12.11 even 2
7920.2.f.b.3761.8 8 44.43 even 2