Normalized defining polynomial
\( x^{12} + 299x^{10} + 34385x^{8} + 1898052x^{6} + 50931062x^{4} + 585707213x^{2} + 1924466557 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1086685418134968704585728\) \(\medspace = 2^{12}\cdot 13^{11}\cdot 23^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(100.70\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 13^{11/12}23^{1/2}\approx 100.69517320952251$ | ||
Ramified primes: | \(2\), \(13\), \(23\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1196=2^{2}\cdot 13\cdot 23\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1196}(1,·)$, $\chi_{1196}(643,·)$, $\chi_{1196}(737,·)$, $\chi_{1196}(551,·)$, $\chi_{1196}(1103,·)$, $\chi_{1196}(275,·)$, $\chi_{1196}(277,·)$, $\chi_{1196}(185,·)$, $\chi_{1196}(827,·)$, $\chi_{1196}(829,·)$, $\chi_{1196}(735,·)$, $\chi_{1196}(1013,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.18595408.2$^{2}$, 12.0.1086685418134968704585728.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{23}a^{2}$, $\frac{1}{23}a^{3}$, $\frac{1}{529}a^{4}$, $\frac{1}{529}a^{5}$, $\frac{1}{12167}a^{6}$, $\frac{1}{12167}a^{7}$, $\frac{1}{279841}a^{8}$, $\frac{1}{279841}a^{9}$, $\frac{1}{6436343}a^{10}$, $\frac{1}{6436343}a^{11}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{4}\times C_{4516}$, which has order $36128$ (assuming GRH)
Relative class number: $36128$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{279841}a^{8}+\frac{8}{12167}a^{6}+\frac{20}{529}a^{4}+\frac{16}{23}a^{2}+2$, $\frac{1}{279841}a^{8}+\frac{9}{12167}a^{6}+\frac{27}{529}a^{4}+\frac{29}{23}a^{2}+6$, $\frac{1}{529}a^{4}+\frac{4}{23}a^{2}+2$, $\frac{1}{12167}a^{6}+\frac{6}{529}a^{4}+\frac{10}{23}a^{2}+4$, $\frac{1}{23}a^{2}+3$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 120.784031363 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 120.784031363 \cdot 36128}{2\cdot\sqrt{1086685418134968704585728}}\cr\approx \mathstrut & 0.128780686475 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.18595408.2, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | R | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.12.0.1}{12} }$ | R | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.12.12.25 | $x^{12} + 12 x^{11} + 60 x^{10} + 160 x^{9} + 308 x^{8} + 736 x^{7} + 2272 x^{6} + 5632 x^{5} + 10608 x^{4} + 15040 x^{3} + 12224 x^{2} + 3584 x + 704$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
\(13\) | 13.12.11.4 | $x^{12} + 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
\(23\) | 23.6.3.2 | $x^{6} + 73 x^{4} + 36 x^{3} + 1591 x^{2} - 2412 x + 10467$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
23.6.3.2 | $x^{6} + 73 x^{4} + 36 x^{3} + 1591 x^{2} - 2412 x + 10467$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |