Properties

Label 12.0.4469547301936929.2
Degree $12$
Signature $[0, 6]$
Discriminant $4.470\times 10^{15}$
Root discriminant \(20.15\)
Ramified primes $3,19$
Class number $3$
Class group [3]
Galois group $D_6$ (as 12T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64)
 
gp: K = bnfinit(y^12 - 3*y^11 + 10*y^10 - 11*y^9 + 27*y^8 - 36*y^7 + 31*y^6 - 9*y^5 + 10*y^4 + 107*y^3 - 39*y^2 - 8*y + 64, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64)
 

\( x^{12} - 3 x^{11} + 10 x^{10} - 11 x^{9} + 27 x^{8} - 36 x^{7} + 31 x^{6} - 9 x^{5} + 10 x^{4} + \cdots + 64 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(4469547301936929\) \(\medspace = 3^{6}\cdot 19^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(20.15\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}19^{5/6}\approx 20.14599065465418$
Ramified primes:   \(3\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{6}-\frac{1}{6}a^{4}-\frac{1}{6}a^{3}-\frac{1}{3}a^{2}-\frac{1}{6}a-\frac{1}{3}$, $\frac{1}{12}a^{7}+\frac{1}{6}a^{5}+\frac{1}{6}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a^{2}+\frac{1}{12}a$, $\frac{1}{24}a^{8}-\frac{1}{24}a^{7}-\frac{1}{12}a^{6}-\frac{1}{4}a^{4}-\frac{5}{12}a^{3}+\frac{7}{24}a^{2}+\frac{1}{8}a+\frac{1}{3}$, $\frac{1}{24}a^{9}-\frac{1}{24}a^{7}-\frac{1}{12}a^{6}-\frac{1}{12}a^{5}+\frac{5}{24}a^{3}-\frac{5}{12}a^{2}+\frac{1}{24}a+\frac{1}{3}$, $\frac{1}{360}a^{10}-\frac{7}{360}a^{9}+\frac{1}{360}a^{8}-\frac{11}{360}a^{7}+\frac{1}{90}a^{6}-\frac{5}{36}a^{5}-\frac{7}{360}a^{4}+\frac{11}{40}a^{3}+\frac{53}{360}a^{2}-\frac{1}{120}a+\frac{14}{45}$, $\frac{1}{16560}a^{11}+\frac{7}{8280}a^{10}+\frac{4}{1035}a^{9}+\frac{59}{3312}a^{8}+\frac{7}{4140}a^{7}+\frac{271}{4140}a^{6}-\frac{1597}{16560}a^{5}+\frac{457}{2760}a^{4}-\frac{1477}{4140}a^{3}+\frac{49}{368}a^{2}-\frac{247}{2070}a-\frac{57}{115}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{7}{5520} a^{11} - \frac{13}{1380} a^{10} + \frac{5}{184} a^{9} - \frac{213}{1840} a^{8} + \frac{113}{920} a^{7} - \frac{157}{460} a^{6} + \frac{3359}{5520} a^{5} - \frac{739}{1380} a^{4} + \frac{89}{184} a^{3} - \frac{3337}{5520} a^{2} - \frac{2123}{2760} a + \frac{116}{115} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{360}a^{11}-\frac{1}{36}a^{10}+\frac{11}{180}a^{9}-\frac{59}{360}a^{8}+\frac{11}{180}a^{7}-\frac{19}{45}a^{6}+\frac{23}{360}a^{5}+\frac{1}{4}a^{4}-\frac{107}{180}a^{3}+\frac{161}{120}a^{2}-\frac{487}{180}a+\frac{1}{15}$, $\frac{1}{240}a^{11}-\frac{13}{360}a^{10}+\frac{17}{180}a^{9}-\frac{173}{720}a^{8}+\frac{71}{360}a^{7}-\frac{11}{18}a^{6}+\frac{289}{720}a^{5}-\frac{119}{360}a^{4}+\frac{7}{60}a^{3}+\frac{641}{720}a^{2}-\frac{289}{120}a-\frac{19}{9}$, $\frac{17}{5520}a^{11}-\frac{43}{2070}a^{10}+\frac{101}{1656}a^{9}-\frac{2573}{16560}a^{8}+\frac{1703}{8280}a^{7}-\frac{2417}{4140}a^{6}+\frac{10093}{16560}a^{5}-\frac{1147}{1035}a^{4}+\frac{403}{552}a^{3}-\frac{15379}{16560}a^{2}+\frac{1903}{2760}a-\frac{449}{1035}$, $\frac{169}{3312}a^{11}-\frac{133}{828}a^{10}+\frac{427}{828}a^{9}-\frac{2033}{3312}a^{8}+\frac{2297}{1656}a^{7}-\frac{1811}{828}a^{6}+\frac{6107}{3312}a^{5}-\frac{24}{23}a^{4}+\frac{601}{414}a^{3}+\frac{4247}{1104}a^{2}-\frac{3235}{1656}a-\frac{103}{69}$, $\frac{571}{16560}a^{11}-\frac{26}{207}a^{10}+\frac{1753}{4140}a^{9}-\frac{10679}{16560}a^{8}+\frac{10961}{8280}a^{7}-\frac{8513}{4140}a^{6}+\frac{37553}{16560}a^{5}-\frac{445}{276}a^{4}+\frac{2287}{2070}a^{3}+\frac{4747}{1840}a^{2}-\frac{33607}{8280}a+\frac{293}{345}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2885.43572816 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 2885.43572816 \cdot 3}{6\cdot\sqrt{4469547301936929}}\cr\approx \mathstrut & 1.32778834009 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 3*x^11 + 10*x^10 - 11*x^9 + 27*x^8 - 36*x^7 + 31*x^6 - 9*x^5 + 10*x^4 + 107*x^3 - 39*x^2 - 8*x + 64);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_6$ (as 12T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 12
The 6 conjugacy class representatives for $D_6$
Character table for $D_6$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{57}) \), 3.1.1083.1 x3, \(\Q(\sqrt{-3}, \sqrt{-19})\), 6.0.3518667.2, 6.0.22284891.1 x3, 6.2.66854673.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.2.66854673.1, 6.0.22284891.1
Minimal sibling: 6.0.22284891.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{6}$ R ${\href{/padicField/5.2.0.1}{2} }^{6}$ ${\href{/padicField/7.3.0.1}{3} }^{4}$ ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{6}$ R ${\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(19\) Copy content Toggle raw display 19.6.5.5$x^{6} + 19$$6$$1$$5$$C_6$$[\ ]_{6}$
19.6.5.5$x^{6} + 19$$6$$1$$5$$C_6$$[\ ]_{6}$