Normalized defining polynomial
\( x^{16} - 2 x^{15} - 8 x^{14} + 17 x^{13} + 20 x^{12} - 44 x^{11} - 25 x^{10} + 22 x^{9} + 24 x^{8} + \cdots + 2 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-10612039879318707392816\) \(\medspace = -\,2^{4}\cdot 11^{3}\cdot 163^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(23.80\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 11^{3/4}163^{2/3}\approx 360.4676089578411$ | ||
Ramified primes: | \(2\), \(11\), \(163\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-11}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2035}a^{14}+\frac{192}{2035}a^{13}-\frac{571}{2035}a^{12}+\frac{301}{2035}a^{11}+\frac{3}{37}a^{10}+\frac{10}{407}a^{9}-\frac{1}{407}a^{8}-\frac{983}{2035}a^{7}+\frac{412}{2035}a^{6}-\frac{431}{2035}a^{5}-\frac{357}{2035}a^{4}+\frac{12}{407}a^{3}-\frac{328}{2035}a^{2}-\frac{134}{2035}a-\frac{753}{2035}$, $\frac{1}{20504660}a^{15}-\frac{3821}{20504660}a^{14}+\frac{641413}{1864060}a^{13}+\frac{1690146}{5126165}a^{12}-\frac{1435432}{5126165}a^{11}-\frac{245050}{1025233}a^{10}+\frac{673747}{4100932}a^{9}+\frac{3969017}{20504660}a^{8}-\frac{8057239}{20504660}a^{7}-\frac{359527}{20504660}a^{6}-\frac{4878147}{10252330}a^{5}-\frac{9540019}{20504660}a^{4}+\frac{1095887}{20504660}a^{3}-\frac{670025}{4100932}a^{2}-\frac{2439519}{5126165}a-\frac{3085153}{10252330}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{32851329}{20504660}a^{15}-\frac{87594989}{20504660}a^{14}-\frac{18695643}{1864060}a^{13}+\frac{175040439}{5126165}a^{12}+\frac{48513167}{5126165}a^{11}-\frac{80342750}{1025233}a^{10}+\frac{53852091}{4100932}a^{9}+\frac{595216013}{20504660}a^{8}+\frac{342950109}{20504660}a^{7}+\frac{2010541397}{20504660}a^{6}-\frac{211608953}{10252330}a^{5}-\frac{4133993691}{20504660}a^{4}-\frac{1450773077}{20504660}a^{3}+\frac{535839383}{4100932}a^{2}+\frac{404667854}{5126165}a+\frac{28379733}{10252330}$, $\frac{6414223}{5126165}a^{15}-\frac{17131276}{5126165}a^{14}-\frac{3607052}{466015}a^{13}+\frac{27048085}{1025233}a^{12}+\frac{36642798}{5126165}a^{11}-\frac{60672999}{1025233}a^{10}+\frac{8825778}{1025233}a^{9}+\frac{103149436}{5126165}a^{8}+\frac{85714502}{5126165}a^{7}+\frac{382521628}{5126165}a^{6}-\frac{68576669}{5126165}a^{5}-\frac{794703601}{5126165}a^{4}-\frac{303178984}{5126165}a^{3}+\frac{485511734}{5126165}a^{2}+\frac{339560269}{5126165}a+\frac{30062441}{5126165}$, $\frac{3641181}{10252330}a^{15}-\frac{9760331}{10252330}a^{14}-\frac{1995657}{932030}a^{13}+\frac{37978307}{5126165}a^{12}+\frac{229938}{138545}a^{11}-\frac{16484828}{1025233}a^{10}+\frac{6066727}{2050466}a^{9}+\frac{45467517}{10252330}a^{8}+\frac{47931891}{10252330}a^{7}+\frac{206842203}{10252330}a^{6}-\frac{15578437}{5126165}a^{5}-\frac{421636449}{10252330}a^{4}-\frac{170525273}{10252330}a^{3}+\frac{52282133}{2050466}a^{2}+\frac{81973237}{5126165}a+\frac{1266372}{5126165}$, $\frac{10723551}{20504660}a^{15}-\frac{27154403}{20504660}a^{14}-\frac{583091}{169460}a^{13}+\frac{54750794}{5126165}a^{12}+\frac{4511803}{1025233}a^{11}-\frac{25512815}{1025233}a^{10}+\frac{5313321}{4100932}a^{9}+\frac{188761707}{20504660}a^{8}+\frac{139296907}{20504660}a^{7}+\frac{670172439}{20504660}a^{6}-\frac{913233}{277090}a^{5}-\frac{264616289}{4100932}a^{4}-\frac{646609323}{20504660}a^{3}+\frac{801164601}{20504660}a^{2}+\frac{152817243}{5126165}a+\frac{8535623}{2050466}$, $\frac{501625}{2050466}a^{15}-\frac{5960003}{10252330}a^{14}-\frac{139881}{84730}a^{13}+\frac{23692054}{5126165}a^{12}+\frac{12954001}{5126165}a^{11}-\frac{10780046}{1025233}a^{10}-\frac{2058981}{2050466}a^{9}+\frac{7069339}{2050466}a^{8}+\frac{40133939}{10252330}a^{7}+\frac{145805109}{10252330}a^{6}+\frac{8892899}{5126165}a^{5}-\frac{287814569}{10252330}a^{4}-\frac{36017517}{2050466}a^{3}+\frac{143230359}{10252330}a^{2}+\frac{77408731}{5126165}a+\frac{15977282}{5126165}$, $\frac{1410479}{1864060}a^{15}-\frac{796811}{372812}a^{14}-\frac{1605531}{372812}a^{13}+\frac{7673198}{466015}a^{12}+\frac{760093}{466015}a^{11}-\frac{3264152}{93203}a^{10}+\frac{3737649}{372812}a^{9}+\frac{17009143}{1864060}a^{8}+\frac{19224187}{1864060}a^{7}+\frac{431931}{10076}a^{6}-\frac{2601153}{186406}a^{5}-\frac{15191799}{169460}a^{4}-\frac{44263587}{1864060}a^{3}+\frac{9615503}{169460}a^{2}+\frac{3115973}{93203}a+\frac{1576367}{932030}$, $\frac{368491}{466015}a^{15}-\frac{1109177}{466015}a^{14}-\frac{1881019}{466015}a^{13}+\frac{1660526}{93203}a^{12}-\frac{729924}{466015}a^{11}-\frac{3292214}{93203}a^{10}+\frac{134169}{8473}a^{9}+\frac{2326997}{466015}a^{8}+\frac{5862974}{466015}a^{7}+\frac{19652641}{466015}a^{6}-\frac{10036868}{466015}a^{5}-\frac{41280032}{466015}a^{4}-\frac{5722943}{466015}a^{3}+\frac{27124133}{466015}a^{2}+\frac{11935808}{466015}a+\frac{349447}{466015}$, $\frac{22863091}{20504660}a^{15}-\frac{63623431}{20504660}a^{14}-\frac{12189717}{1864060}a^{13}+\frac{123875716}{5126165}a^{12}+\frac{19245728}{5126165}a^{11}-\frac{54119686}{1025233}a^{10}+\frac{52179925}{4100932}a^{9}+\frac{338417327}{20504660}a^{8}+\frac{288502671}{20504660}a^{7}+\frac{1320420063}{20504660}a^{6}-\frac{185156787}{10252330}a^{5}-\frac{2803441389}{20504660}a^{4}-\frac{814724363}{20504660}a^{3}+\frac{363122537}{4100932}a^{2}+\frac{264219251}{5126165}a+\frac{14828747}{10252330}$, $\frac{1809326}{5126165}a^{15}-\frac{3898254}{5126165}a^{14}-\frac{1258078}{466015}a^{13}+\frac{32591142}{5126165}a^{12}+\frac{31528524}{5126165}a^{11}-\frac{16587375}{1025233}a^{10}-\frac{7094049}{1025233}a^{9}+\frac{44783502}{5126165}a^{8}+\frac{7688462}{1025233}a^{7}+\frac{116844722}{5126165}a^{6}+\frac{42361499}{5126165}a^{5}-\frac{252415613}{5126165}a^{4}-\frac{200363458}{5126165}a^{3}+\frac{109942694}{5126165}a^{2}+\frac{170959276}{5126165}a+\frac{53807833}{5126165}$, $\frac{1446263}{5126165}a^{15}-\frac{101953}{138545}a^{14}-\frac{881637}{466015}a^{13}+\frac{6354233}{1025233}a^{12}+\frac{11440348}{5126165}a^{11}-\frac{15904443}{1025233}a^{10}+\frac{2968346}{1025233}a^{9}+\frac{37290326}{5126165}a^{8}+\frac{2480397}{5126165}a^{7}+\frac{99764463}{5126165}a^{6}-\frac{27304289}{5126165}a^{5}-\frac{189520026}{5126165}a^{4}-\frac{65405104}{5126165}a^{3}+\frac{139606884}{5126165}a^{2}+\frac{1928132}{138545}a-\frac{6692219}{5126165}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 248731.376036 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{5}\cdot 248731.376036 \cdot 1}{2\cdot\sqrt{10612039879318707392816}}\cr\approx \mathstrut & 0.756624597539 \end{aligned}\]
Galois group
$C_4^4:\SL(2,3)$ (as 16T1672):
A solvable group of order 6144 |
The 56 conjugacy class representatives for $C_4^4:\SL(2,3)$ |
Character table for $C_4^4:\SL(2,3)$ |
Intermediate fields
4.4.26569.1, 8.6.7765029371.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.2.10612039879318707392816.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{3}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.12.0.1 | $x^{12} + x^{7} + x^{6} + x^{5} + x^{3} + x + 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
\(11\) | 11.3.0.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
11.3.0.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
11.4.3.1 | $x^{4} + 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
11.6.0.1 | $x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(163\) | 163.2.0.1 | $x^{2} + 159 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
163.2.0.1 | $x^{2} + 159 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
163.6.4.1 | $x^{6} + 477 x^{5} + 75849 x^{4} + 4021913 x^{3} + 229449 x^{2} + 12362361 x + 655078752$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
163.6.4.1 | $x^{6} + 477 x^{5} + 75849 x^{4} + 4021913 x^{3} + 229449 x^{2} + 12362361 x + 655078752$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |