Properties

Label 18.0.580...000.2
Degree $18$
Signature $[0, 9]$
Discriminant $-5.802\times 10^{29}$
Root discriminant \(45.03\)
Ramified primes $2,5,19$
Class number $78$ (GRH)
Class group [78] (GRH)
Galois group $S_3 \times C_6$ (as 18T6)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561)
 
gp: K = bnfinit(y^18 - 6*y^17 + 11*y^16 + 24*y^15 - 121*y^14 + 36*y^13 + 803*y^12 - 1458*y^11 - 1679*y^10 + 8232*y^9 - 4428*y^8 - 10054*y^7 + 3009*y^6 + 22712*y^5 + 79531*y^4 - 343084*y^3 + 511207*y^2 - 353486*y + 92561, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561)
 

\( x^{18} - 6 x^{17} + 11 x^{16} + 24 x^{15} - 121 x^{14} + 36 x^{13} + 803 x^{12} - 1458 x^{11} + \cdots + 92561 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-580207226143679709184000000000\) \(\medspace = -\,2^{27}\cdot 5^{9}\cdot 19^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.03\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{1/2}19^{2/3}\approx 45.0331572624958$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-10}) \)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{21}a^{12}+\frac{10}{21}a^{11}+\frac{2}{7}a^{10}+\frac{1}{21}a^{9}+\frac{1}{3}a^{8}-\frac{8}{21}a^{7}+\frac{2}{21}a^{6}+\frac{1}{3}a^{5}+\frac{1}{7}a^{4}+\frac{8}{21}a^{2}-\frac{4}{21}a+\frac{1}{3}$, $\frac{1}{21}a^{13}-\frac{10}{21}a^{11}+\frac{4}{21}a^{10}-\frac{1}{7}a^{9}+\frac{2}{7}a^{8}-\frac{2}{21}a^{7}+\frac{8}{21}a^{6}-\frac{4}{21}a^{5}-\frac{3}{7}a^{4}+\frac{8}{21}a^{3}+\frac{5}{21}a-\frac{1}{3}$, $\frac{1}{21}a^{14}-\frac{1}{21}a^{11}-\frac{2}{7}a^{10}-\frac{5}{21}a^{9}+\frac{5}{21}a^{8}-\frac{3}{7}a^{7}-\frac{5}{21}a^{6}-\frac{2}{21}a^{5}-\frac{4}{21}a^{4}+\frac{1}{21}a^{2}-\frac{5}{21}a+\frac{1}{3}$, $\frac{1}{21}a^{15}+\frac{4}{21}a^{11}+\frac{1}{21}a^{10}+\frac{2}{7}a^{9}-\frac{2}{21}a^{8}+\frac{8}{21}a^{7}+\frac{1}{7}a^{5}+\frac{1}{7}a^{4}+\frac{1}{21}a^{3}+\frac{1}{7}a^{2}+\frac{1}{7}a+\frac{1}{3}$, $\frac{1}{21}a^{16}+\frac{1}{7}a^{11}+\frac{1}{7}a^{10}-\frac{2}{7}a^{9}+\frac{1}{21}a^{8}-\frac{10}{21}a^{7}-\frac{5}{21}a^{6}-\frac{4}{21}a^{5}+\frac{10}{21}a^{4}+\frac{1}{7}a^{3}-\frac{8}{21}a^{2}+\frac{2}{21}a-\frac{1}{3}$, $\frac{1}{25\!\cdots\!43}a^{17}-\frac{17\!\cdots\!40}{85\!\cdots\!81}a^{16}+\frac{12\!\cdots\!70}{85\!\cdots\!81}a^{15}+\frac{13\!\cdots\!80}{25\!\cdots\!43}a^{14}+\frac{59\!\cdots\!70}{25\!\cdots\!43}a^{13}-\frac{92\!\cdots\!63}{25\!\cdots\!43}a^{12}-\frac{32\!\cdots\!65}{85\!\cdots\!81}a^{11}-\frac{21\!\cdots\!42}{52\!\cdots\!07}a^{10}-\frac{12\!\cdots\!44}{25\!\cdots\!43}a^{9}-\frac{32\!\cdots\!85}{85\!\cdots\!81}a^{8}-\frac{11\!\cdots\!67}{36\!\cdots\!49}a^{7}-\frac{27\!\cdots\!33}{85\!\cdots\!81}a^{6}+\frac{85\!\cdots\!61}{85\!\cdots\!81}a^{5}+\frac{78\!\cdots\!92}{25\!\cdots\!43}a^{4}+\frac{28\!\cdots\!10}{85\!\cdots\!81}a^{3}-\frac{11\!\cdots\!00}{25\!\cdots\!43}a^{2}+\frac{26\!\cdots\!68}{17\!\cdots\!69}a+\frac{17\!\cdots\!73}{52\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{78}$, which has order $78$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{57\!\cdots\!30}{25\!\cdots\!43}a^{17}-\frac{29\!\cdots\!27}{25\!\cdots\!43}a^{16}+\frac{39\!\cdots\!87}{25\!\cdots\!43}a^{15}+\frac{56\!\cdots\!92}{85\!\cdots\!81}a^{14}-\frac{18\!\cdots\!52}{85\!\cdots\!81}a^{13}-\frac{23\!\cdots\!97}{25\!\cdots\!43}a^{12}+\frac{14\!\cdots\!94}{85\!\cdots\!81}a^{11}-\frac{69\!\cdots\!04}{36\!\cdots\!49}a^{10}-\frac{44\!\cdots\!76}{85\!\cdots\!81}a^{9}+\frac{36\!\cdots\!49}{25\!\cdots\!43}a^{8}+\frac{16\!\cdots\!51}{12\!\cdots\!83}a^{7}-\frac{55\!\cdots\!39}{25\!\cdots\!43}a^{6}-\frac{26\!\cdots\!45}{25\!\cdots\!43}a^{5}+\frac{10\!\cdots\!91}{25\!\cdots\!43}a^{4}+\frac{54\!\cdots\!38}{25\!\cdots\!43}a^{3}-\frac{15\!\cdots\!66}{25\!\cdots\!43}a^{2}+\frac{35\!\cdots\!46}{52\!\cdots\!07}a-\frac{13\!\cdots\!49}{52\!\cdots\!07}$, $\frac{62\!\cdots\!44}{25\!\cdots\!43}a^{17}-\frac{32\!\cdots\!64}{25\!\cdots\!43}a^{16}+\frac{44\!\cdots\!86}{25\!\cdots\!43}a^{15}+\frac{60\!\cdots\!66}{85\!\cdots\!81}a^{14}-\frac{20\!\cdots\!51}{85\!\cdots\!81}a^{13}-\frac{23\!\cdots\!10}{25\!\cdots\!43}a^{12}+\frac{16\!\cdots\!18}{85\!\cdots\!81}a^{11}-\frac{78\!\cdots\!39}{36\!\cdots\!49}a^{10}-\frac{48\!\cdots\!71}{85\!\cdots\!81}a^{9}+\frac{40\!\cdots\!03}{25\!\cdots\!43}a^{8}+\frac{13\!\cdots\!57}{12\!\cdots\!83}a^{7}-\frac{61\!\cdots\!37}{25\!\cdots\!43}a^{6}-\frac{26\!\cdots\!03}{25\!\cdots\!43}a^{5}+\frac{12\!\cdots\!71}{25\!\cdots\!43}a^{4}+\frac{58\!\cdots\!50}{25\!\cdots\!43}a^{3}-\frac{17\!\cdots\!55}{25\!\cdots\!43}a^{2}+\frac{39\!\cdots\!20}{52\!\cdots\!07}a-\frac{16\!\cdots\!00}{52\!\cdots\!07}$, $\frac{25\!\cdots\!64}{69\!\cdots\!39}a^{17}-\frac{17\!\cdots\!24}{69\!\cdots\!39}a^{16}+\frac{35\!\cdots\!13}{69\!\cdots\!39}a^{15}+\frac{21\!\cdots\!22}{23\!\cdots\!13}a^{14}-\frac{12\!\cdots\!56}{23\!\cdots\!13}a^{13}+\frac{19\!\cdots\!99}{69\!\cdots\!39}a^{12}+\frac{81\!\cdots\!56}{23\!\cdots\!13}a^{11}-\frac{72\!\cdots\!26}{99\!\cdots\!77}a^{10}-\frac{16\!\cdots\!86}{23\!\cdots\!13}a^{9}+\frac{28\!\cdots\!41}{69\!\cdots\!39}a^{8}-\frac{72\!\cdots\!57}{33\!\cdots\!59}a^{7}-\frac{45\!\cdots\!13}{69\!\cdots\!39}a^{6}+\frac{18\!\cdots\!75}{69\!\cdots\!39}a^{5}+\frac{10\!\cdots\!35}{69\!\cdots\!39}a^{4}+\frac{20\!\cdots\!58}{69\!\cdots\!39}a^{3}-\frac{11\!\cdots\!73}{69\!\cdots\!39}a^{2}+\frac{22\!\cdots\!26}{99\!\cdots\!77}a-\frac{13\!\cdots\!51}{14\!\cdots\!11}$, $\frac{94\!\cdots\!66}{85\!\cdots\!81}a^{17}-\frac{49\!\cdots\!87}{85\!\cdots\!81}a^{16}+\frac{66\!\cdots\!83}{85\!\cdots\!81}a^{15}+\frac{27\!\cdots\!05}{85\!\cdots\!81}a^{14}-\frac{93\!\cdots\!97}{85\!\cdots\!81}a^{13}-\frac{11\!\cdots\!44}{25\!\cdots\!43}a^{12}+\frac{22\!\cdots\!15}{25\!\cdots\!43}a^{11}-\frac{11\!\cdots\!61}{12\!\cdots\!83}a^{10}-\frac{66\!\cdots\!86}{25\!\cdots\!43}a^{9}+\frac{18\!\cdots\!50}{25\!\cdots\!43}a^{8}+\frac{21\!\cdots\!23}{36\!\cdots\!49}a^{7}-\frac{27\!\cdots\!96}{25\!\cdots\!43}a^{6}-\frac{12\!\cdots\!00}{25\!\cdots\!43}a^{5}+\frac{18\!\cdots\!49}{85\!\cdots\!81}a^{4}+\frac{89\!\cdots\!48}{85\!\cdots\!81}a^{3}-\frac{77\!\cdots\!24}{25\!\cdots\!43}a^{2}+\frac{12\!\cdots\!59}{36\!\cdots\!49}a-\frac{70\!\cdots\!77}{52\!\cdots\!07}$, $\frac{21\!\cdots\!90}{25\!\cdots\!43}a^{17}-\frac{10\!\cdots\!10}{25\!\cdots\!43}a^{16}+\frac{88\!\cdots\!52}{25\!\cdots\!43}a^{15}+\frac{22\!\cdots\!20}{85\!\cdots\!81}a^{14}-\frac{55\!\cdots\!70}{85\!\cdots\!81}a^{13}-\frac{19\!\cdots\!60}{25\!\cdots\!43}a^{12}+\frac{15\!\cdots\!31}{25\!\cdots\!43}a^{11}-\frac{12\!\cdots\!49}{36\!\cdots\!49}a^{10}-\frac{54\!\cdots\!57}{25\!\cdots\!43}a^{9}+\frac{32\!\cdots\!02}{85\!\cdots\!81}a^{8}+\frac{13\!\cdots\!43}{52\!\cdots\!07}a^{7}-\frac{40\!\cdots\!81}{85\!\cdots\!81}a^{6}-\frac{73\!\cdots\!66}{85\!\cdots\!81}a^{5}+\frac{15\!\cdots\!24}{25\!\cdots\!43}a^{4}+\frac{22\!\cdots\!22}{25\!\cdots\!43}a^{3}-\frac{14\!\cdots\!57}{85\!\cdots\!81}a^{2}+\frac{52\!\cdots\!81}{36\!\cdots\!49}a-\frac{99\!\cdots\!33}{17\!\cdots\!69}$, $\frac{27\!\cdots\!02}{25\!\cdots\!43}a^{17}-\frac{47\!\cdots\!90}{85\!\cdots\!81}a^{16}+\frac{60\!\cdots\!02}{85\!\cdots\!81}a^{15}+\frac{81\!\cdots\!39}{25\!\cdots\!43}a^{14}-\frac{26\!\cdots\!37}{25\!\cdots\!43}a^{13}-\frac{41\!\cdots\!60}{85\!\cdots\!81}a^{12}+\frac{21\!\cdots\!71}{25\!\cdots\!43}a^{11}-\frac{45\!\cdots\!47}{52\!\cdots\!07}a^{10}-\frac{21\!\cdots\!16}{85\!\cdots\!81}a^{9}+\frac{57\!\cdots\!60}{85\!\cdots\!81}a^{8}+\frac{16\!\cdots\!16}{17\!\cdots\!69}a^{7}-\frac{25\!\cdots\!13}{25\!\cdots\!43}a^{6}-\frac{13\!\cdots\!99}{25\!\cdots\!43}a^{5}+\frac{51\!\cdots\!14}{25\!\cdots\!43}a^{4}+\frac{26\!\cdots\!05}{25\!\cdots\!43}a^{3}-\frac{72\!\cdots\!18}{25\!\cdots\!43}a^{2}+\frac{11\!\cdots\!27}{36\!\cdots\!49}a-\frac{20\!\cdots\!43}{17\!\cdots\!69}$, $\frac{61\!\cdots\!59}{25\!\cdots\!43}a^{17}-\frac{32\!\cdots\!49}{25\!\cdots\!43}a^{16}+\frac{43\!\cdots\!76}{25\!\cdots\!43}a^{15}+\frac{59\!\cdots\!50}{85\!\cdots\!81}a^{14}-\frac{60\!\cdots\!94}{25\!\cdots\!43}a^{13}-\frac{22\!\cdots\!25}{25\!\cdots\!43}a^{12}+\frac{47\!\cdots\!10}{25\!\cdots\!43}a^{11}-\frac{77\!\cdots\!42}{36\!\cdots\!49}a^{10}-\frac{47\!\cdots\!95}{85\!\cdots\!81}a^{9}+\frac{39\!\cdots\!36}{25\!\cdots\!43}a^{8}+\frac{25\!\cdots\!48}{36\!\cdots\!49}a^{7}-\frac{60\!\cdots\!55}{25\!\cdots\!43}a^{6}-\frac{78\!\cdots\!50}{85\!\cdots\!81}a^{5}+\frac{12\!\cdots\!10}{25\!\cdots\!43}a^{4}+\frac{57\!\cdots\!96}{25\!\cdots\!43}a^{3}-\frac{16\!\cdots\!21}{25\!\cdots\!43}a^{2}+\frac{90\!\cdots\!55}{12\!\cdots\!83}a-\frac{51\!\cdots\!11}{17\!\cdots\!69}$, $\frac{12\!\cdots\!42}{32\!\cdots\!93}a^{17}-\frac{20\!\cdots\!52}{96\!\cdots\!79}a^{16}+\frac{91\!\cdots\!05}{32\!\cdots\!93}a^{15}+\frac{11\!\cdots\!56}{96\!\cdots\!79}a^{14}-\frac{38\!\cdots\!12}{96\!\cdots\!79}a^{13}-\frac{14\!\cdots\!02}{96\!\cdots\!79}a^{12}+\frac{99\!\cdots\!71}{32\!\cdots\!93}a^{11}-\frac{49\!\cdots\!90}{13\!\cdots\!97}a^{10}-\frac{29\!\cdots\!09}{32\!\cdots\!93}a^{9}+\frac{83\!\cdots\!00}{32\!\cdots\!93}a^{8}+\frac{17\!\cdots\!96}{13\!\cdots\!97}a^{7}-\frac{12\!\cdots\!47}{32\!\cdots\!93}a^{6}-\frac{52\!\cdots\!81}{32\!\cdots\!93}a^{5}+\frac{75\!\cdots\!47}{96\!\cdots\!79}a^{4}+\frac{36\!\cdots\!60}{96\!\cdots\!79}a^{3}-\frac{10\!\cdots\!00}{96\!\cdots\!79}a^{2}+\frac{17\!\cdots\!81}{13\!\cdots\!97}a-\frac{33\!\cdots\!16}{65\!\cdots\!57}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 633916.9051977703 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 633916.9051977703 \cdot 78}{2\cdot\sqrt{580207226143679709184000000000}}\cr\approx \mathstrut & 0.495363712140735 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 + 11*x^16 + 24*x^15 - 121*x^14 + 36*x^13 + 803*x^12 - 1458*x^11 - 1679*x^10 + 8232*x^9 - 4428*x^8 - 10054*x^7 + 3009*x^6 + 22712*x^5 + 79531*x^4 - 343084*x^3 + 511207*x^2 - 353486*x + 92561);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 18T6):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $S_3 \times C_6$
Character table for $S_3 \times C_6$

Intermediate fields

\(\Q(\sqrt{-10}) \), 3.1.2888.1, 3.3.361.1, 6.0.8340544000.2, 6.0.8340544000.3, 9.3.24087491072.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 12 sibling: 12.0.533794816000000.1
Degree 18 sibling: 18.6.1133217238561874432000000000.2
Minimal sibling: 12.0.533794816000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{3}$ R ${\href{/padicField/7.2.0.1}{2} }^{6}{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ ${\href{/padicField/11.3.0.1}{3} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{3}$ R ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{3}$ ${\href{/padicField/31.2.0.1}{2} }^{9}$ ${\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ ${\href{/padicField/41.3.0.1}{3} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ ${\href{/padicField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.9.7$x^{6} + 32 x^{4} + 2 x^{3} + 301 x^{2} - 58 x + 811$$2$$3$$9$$C_6$$[3]^{3}$
2.12.18.15$x^{12} - 12 x^{11} - 56 x^{9} + 2372 x^{8} + 8992 x^{7} + 115648 x^{6} + 164160 x^{5} + 1305648 x^{4} - 282560 x^{3} + 5591296 x^{2} - 9640320 x + 8497856$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
\(5\) Copy content Toggle raw display 5.6.3.2$x^{6} + 75 x^{2} - 375$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(19\) Copy content Toggle raw display 19.9.6.2$x^{9} + 981 x^{7} + 108 x^{6} + 316911 x^{5} + 20529 x^{4} + 34115982 x^{3} + 10990188 x^{2} + 130942880 x + 566550143$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
19.9.6.2$x^{9} + 981 x^{7} + 108 x^{6} + 316911 x^{5} + 20529 x^{4} + 34115982 x^{3} + 10990188 x^{2} + 130942880 x + 566550143$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.40.2t1.b.a$1$ $ 2^{3} \cdot 5 $ \(\Q(\sqrt{-10}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.760.6t1.b.a$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.95.6t1.a.a$1$ $ 5 \cdot 19 $ 6.6.16290125.1 $C_6$ (as 6T1) $0$ $1$
1.95.6t1.a.b$1$ $ 5 \cdot 19 $ 6.6.16290125.1 $C_6$ (as 6T1) $0$ $1$
1.152.6t1.c.a$1$ $ 2^{3} \cdot 19 $ 6.0.66724352.1 $C_6$ (as 6T1) $0$ $-1$
* 1.760.6t1.b.b$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.152.6t1.c.b$1$ $ 2^{3} \cdot 19 $ 6.0.66724352.1 $C_6$ (as 6T1) $0$ $-1$
* 1.19.3t1.a.a$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
* 1.19.3t1.a.b$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
* 2.2888.3t2.b.a$2$ $ 2^{3} \cdot 19^{2}$ 3.1.2888.1 $S_3$ (as 3T2) $1$ $0$
* 2.72200.6t3.d.a$2$ $ 2^{3} \cdot 5^{2} \cdot 19^{2}$ 6.0.8340544000.2 $D_{6}$ (as 6T3) $1$ $0$
* 2.152.6t5.a.a$2$ $ 2^{3} \cdot 19 $ 6.0.184832.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.152.6t5.a.b$2$ $ 2^{3} \cdot 19 $ 6.0.184832.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3800.12t18.g.a$2$ $ 2^{3} \cdot 5^{2} \cdot 19 $ 18.0.580207226143679709184000000000.2 $S_3 \times C_6$ (as 18T6) $0$ $0$
* 2.3800.12t18.g.b$2$ $ 2^{3} \cdot 5^{2} \cdot 19 $ 18.0.580207226143679709184000000000.2 $S_3 \times C_6$ (as 18T6) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.