Normalized defining polynomial
\( x^{20} - 4 x^{19} + 76 x^{17} - 608 x^{15} + 57 x^{14} + 3116 x^{13} - 10792 x^{11} + 304 x^{10} + \cdots + 464 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(14595833152648338774900083206236247150592\) \(\medspace = 2^{12}\cdot 19^{19}\cdot 23^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(101.91\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}19^{359/342}23^{1/2}\approx 167.44337081125943$ | ||
Ramified primes: | \(2\), \(19\), \(23\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{437}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}+\frac{1}{4}a$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{4}a^{5}+\frac{1}{4}a^{2}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{8}a^{10}-\frac{1}{8}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}+\frac{1}{8}a^{6}-\frac{3}{8}a^{5}-\frac{3}{8}a^{4}+\frac{1}{8}a^{3}-\frac{3}{8}a^{2}+\frac{1}{4}a$, $\frac{1}{8}a^{14}-\frac{1}{4}a^{8}-\frac{1}{2}a^{5}-\frac{3}{8}a^{2}$, $\frac{1}{8}a^{15}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{8}a^{16}-\frac{1}{4}a^{7}+\frac{3}{8}a^{4}-\frac{1}{4}a$, $\frac{1}{8}a^{17}-\frac{1}{4}a^{8}+\frac{3}{8}a^{5}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{18}-\frac{1}{16}a^{16}-\frac{1}{16}a^{14}-\frac{1}{8}a^{12}-\frac{1}{8}a^{10}+\frac{1}{8}a^{8}-\frac{1}{4}a^{7}+\frac{1}{16}a^{6}-\frac{1}{2}a^{5}-\frac{5}{16}a^{4}+\frac{7}{16}a^{2}-\frac{1}{4}a$, $\frac{1}{89\!\cdots\!92}a^{19}+\frac{16\!\cdots\!91}{89\!\cdots\!92}a^{18}-\frac{14\!\cdots\!23}{89\!\cdots\!92}a^{17}+\frac{33\!\cdots\!63}{89\!\cdots\!92}a^{16}-\frac{38\!\cdots\!59}{89\!\cdots\!92}a^{15}-\frac{83\!\cdots\!37}{89\!\cdots\!92}a^{14}-\frac{20\!\cdots\!09}{44\!\cdots\!96}a^{13}+\frac{51\!\cdots\!11}{44\!\cdots\!96}a^{12}+\frac{96\!\cdots\!65}{44\!\cdots\!96}a^{11}+\frac{25\!\cdots\!23}{44\!\cdots\!96}a^{10}-\frac{76\!\cdots\!19}{44\!\cdots\!96}a^{9}+\frac{21\!\cdots\!15}{44\!\cdots\!96}a^{8}-\frac{17\!\cdots\!35}{89\!\cdots\!92}a^{7}+\frac{54\!\cdots\!67}{89\!\cdots\!92}a^{6}-\frac{31\!\cdots\!35}{89\!\cdots\!92}a^{5}+\frac{17\!\cdots\!11}{89\!\cdots\!92}a^{4}-\frac{12\!\cdots\!07}{89\!\cdots\!92}a^{3}+\frac{44\!\cdots\!03}{89\!\cdots\!92}a^{2}+\frac{71\!\cdots\!23}{22\!\cdots\!48}a-\frac{27\!\cdots\!57}{56\!\cdots\!62}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{26\!\cdots\!05}{11\!\cdots\!24}a^{19}-\frac{19\!\cdots\!03}{22\!\cdots\!48}a^{18}-\frac{72\!\cdots\!61}{22\!\cdots\!48}a^{17}+\frac{20\!\cdots\!11}{11\!\cdots\!24}a^{16}+\frac{17\!\cdots\!60}{28\!\cdots\!81}a^{15}-\frac{32\!\cdots\!57}{22\!\cdots\!48}a^{14}-\frac{37\!\cdots\!73}{11\!\cdots\!24}a^{13}+\frac{20\!\cdots\!39}{28\!\cdots\!81}a^{12}+\frac{25\!\cdots\!69}{11\!\cdots\!24}a^{11}-\frac{14\!\cdots\!01}{56\!\cdots\!62}a^{10}-\frac{72\!\cdots\!15}{11\!\cdots\!24}a^{9}+\frac{69\!\cdots\!33}{11\!\cdots\!24}a^{8}+\frac{14\!\cdots\!43}{11\!\cdots\!24}a^{7}-\frac{23\!\cdots\!77}{22\!\cdots\!48}a^{6}-\frac{11\!\cdots\!61}{22\!\cdots\!48}a^{5}+\frac{13\!\cdots\!09}{11\!\cdots\!24}a^{4}-\frac{17\!\cdots\!89}{11\!\cdots\!24}a^{3}-\frac{17\!\cdots\!89}{22\!\cdots\!48}a^{2}+\frac{51\!\cdots\!39}{11\!\cdots\!24}a-\frac{17\!\cdots\!33}{28\!\cdots\!81}$, $\frac{16\!\cdots\!27}{44\!\cdots\!96}a^{19}-\frac{14\!\cdots\!59}{11\!\cdots\!24}a^{18}-\frac{26\!\cdots\!45}{44\!\cdots\!96}a^{17}+\frac{62\!\cdots\!99}{22\!\cdots\!48}a^{16}+\frac{55\!\cdots\!73}{44\!\cdots\!96}a^{15}-\frac{49\!\cdots\!29}{22\!\cdots\!48}a^{14}-\frac{23\!\cdots\!05}{28\!\cdots\!81}a^{13}+\frac{25\!\cdots\!71}{22\!\cdots\!48}a^{12}+\frac{60\!\cdots\!97}{11\!\cdots\!24}a^{11}-\frac{83\!\cdots\!17}{22\!\cdots\!48}a^{10}-\frac{48\!\cdots\!85}{28\!\cdots\!81}a^{9}+\frac{19\!\cdots\!13}{22\!\cdots\!48}a^{8}+\frac{16\!\cdots\!69}{44\!\cdots\!96}a^{7}-\frac{32\!\cdots\!01}{22\!\cdots\!48}a^{6}-\frac{17\!\cdots\!83}{44\!\cdots\!96}a^{5}+\frac{17\!\cdots\!61}{11\!\cdots\!24}a^{4}+\frac{26\!\cdots\!75}{44\!\cdots\!96}a^{3}-\frac{60\!\cdots\!15}{56\!\cdots\!62}a^{2}+\frac{29\!\cdots\!13}{56\!\cdots\!62}a-\frac{17\!\cdots\!03}{28\!\cdots\!81}$, $\frac{28\!\cdots\!67}{89\!\cdots\!92}a^{19}-\frac{10\!\cdots\!03}{89\!\cdots\!92}a^{18}-\frac{10\!\cdots\!45}{89\!\cdots\!92}a^{17}+\frac{27\!\cdots\!01}{89\!\cdots\!92}a^{16}-\frac{92\!\cdots\!81}{89\!\cdots\!92}a^{15}-\frac{22\!\cdots\!15}{89\!\cdots\!92}a^{14}+\frac{70\!\cdots\!27}{44\!\cdots\!96}a^{13}+\frac{56\!\cdots\!55}{44\!\cdots\!96}a^{12}-\frac{45\!\cdots\!87}{44\!\cdots\!96}a^{11}-\frac{18\!\cdots\!89}{44\!\cdots\!96}a^{10}+\frac{17\!\cdots\!57}{44\!\cdots\!96}a^{9}+\frac{39\!\cdots\!91}{44\!\cdots\!96}a^{8}-\frac{96\!\cdots\!45}{89\!\cdots\!92}a^{7}-\frac{94\!\cdots\!19}{89\!\cdots\!92}a^{6}+\frac{16\!\cdots\!83}{89\!\cdots\!92}a^{5}+\frac{35\!\cdots\!77}{89\!\cdots\!92}a^{4}-\frac{15\!\cdots\!85}{89\!\cdots\!92}a^{3}+\frac{89\!\cdots\!01}{89\!\cdots\!92}a^{2}-\frac{46\!\cdots\!09}{22\!\cdots\!48}a+\frac{86\!\cdots\!41}{56\!\cdots\!62}$, $\frac{66\!\cdots\!23}{28\!\cdots\!81}a^{19}-\frac{44\!\cdots\!53}{44\!\cdots\!96}a^{18}-\frac{76\!\cdots\!39}{28\!\cdots\!81}a^{17}+\frac{85\!\cdots\!03}{44\!\cdots\!96}a^{16}-\frac{86\!\cdots\!49}{22\!\cdots\!48}a^{15}-\frac{69\!\cdots\!17}{44\!\cdots\!96}a^{14}+\frac{59\!\cdots\!41}{11\!\cdots\!24}a^{13}+\frac{17\!\cdots\!87}{22\!\cdots\!48}a^{12}-\frac{27\!\cdots\!39}{11\!\cdots\!24}a^{11}-\frac{61\!\cdots\!87}{22\!\cdots\!48}a^{10}+\frac{11\!\cdots\!03}{11\!\cdots\!24}a^{9}+\frac{15\!\cdots\!85}{22\!\cdots\!48}a^{8}-\frac{30\!\cdots\!07}{11\!\cdots\!24}a^{7}-\frac{50\!\cdots\!17}{44\!\cdots\!96}a^{6}+\frac{67\!\cdots\!85}{11\!\cdots\!24}a^{5}+\frac{52\!\cdots\!35}{44\!\cdots\!96}a^{4}-\frac{18\!\cdots\!33}{22\!\cdots\!48}a^{3}-\frac{27\!\cdots\!33}{44\!\cdots\!96}a^{2}+\frac{18\!\cdots\!83}{28\!\cdots\!81}a-\frac{45\!\cdots\!79}{28\!\cdots\!81}$, $\frac{23\!\cdots\!65}{11\!\cdots\!24}a^{19}+\frac{15\!\cdots\!37}{44\!\cdots\!96}a^{18}-\frac{12\!\cdots\!73}{28\!\cdots\!81}a^{17}+\frac{80\!\cdots\!83}{44\!\cdots\!96}a^{16}+\frac{17\!\cdots\!05}{22\!\cdots\!48}a^{15}-\frac{51\!\cdots\!91}{44\!\cdots\!96}a^{14}-\frac{51\!\cdots\!13}{11\!\cdots\!24}a^{13}+\frac{13\!\cdots\!85}{22\!\cdots\!48}a^{12}+\frac{20\!\cdots\!61}{11\!\cdots\!24}a^{11}-\frac{35\!\cdots\!25}{22\!\cdots\!48}a^{10}-\frac{11\!\cdots\!56}{28\!\cdots\!81}a^{9}+\frac{87\!\cdots\!25}{22\!\cdots\!48}a^{8}+\frac{16\!\cdots\!03}{28\!\cdots\!81}a^{7}-\frac{22\!\cdots\!51}{44\!\cdots\!96}a^{6}-\frac{27\!\cdots\!21}{11\!\cdots\!24}a^{5}+\frac{31\!\cdots\!71}{44\!\cdots\!96}a^{4}-\frac{68\!\cdots\!61}{22\!\cdots\!48}a^{3}-\frac{10\!\cdots\!19}{44\!\cdots\!96}a^{2}+\frac{64\!\cdots\!97}{56\!\cdots\!62}a-\frac{42\!\cdots\!37}{28\!\cdots\!81}$, $\frac{14\!\cdots\!83}{89\!\cdots\!92}a^{19}+\frac{38\!\cdots\!81}{89\!\cdots\!92}a^{18}-\frac{34\!\cdots\!49}{89\!\cdots\!92}a^{17}+\frac{95\!\cdots\!45}{89\!\cdots\!92}a^{16}+\frac{72\!\cdots\!75}{89\!\cdots\!92}a^{15}-\frac{61\!\cdots\!63}{89\!\cdots\!92}a^{14}-\frac{28\!\cdots\!81}{44\!\cdots\!96}a^{13}+\frac{14\!\cdots\!55}{44\!\cdots\!96}a^{12}+\frac{14\!\cdots\!97}{44\!\cdots\!96}a^{11}-\frac{26\!\cdots\!17}{44\!\cdots\!96}a^{10}-\frac{49\!\cdots\!75}{44\!\cdots\!96}a^{9}+\frac{34\!\cdots\!51}{44\!\cdots\!96}a^{8}+\frac{24\!\cdots\!63}{89\!\cdots\!92}a^{7}+\frac{31\!\cdots\!81}{89\!\cdots\!92}a^{6}-\frac{41\!\cdots\!09}{89\!\cdots\!92}a^{5}+\frac{13\!\cdots\!85}{89\!\cdots\!92}a^{4}+\frac{46\!\cdots\!87}{89\!\cdots\!92}a^{3}-\frac{50\!\cdots\!39}{89\!\cdots\!92}a^{2}-\frac{76\!\cdots\!45}{22\!\cdots\!48}a+\frac{81\!\cdots\!07}{56\!\cdots\!62}$, $\frac{90\!\cdots\!97}{89\!\cdots\!92}a^{19}-\frac{35\!\cdots\!11}{89\!\cdots\!92}a^{18}-\frac{37\!\cdots\!55}{89\!\cdots\!92}a^{17}+\frac{68\!\cdots\!53}{89\!\cdots\!92}a^{16}+\frac{71\!\cdots\!13}{89\!\cdots\!92}a^{15}-\frac{55\!\cdots\!39}{89\!\cdots\!92}a^{14}-\frac{26\!\cdots\!59}{44\!\cdots\!96}a^{13}+\frac{14\!\cdots\!35}{44\!\cdots\!96}a^{12}+\frac{14\!\cdots\!39}{44\!\cdots\!96}a^{11}-\frac{48\!\cdots\!85}{44\!\cdots\!96}a^{10}-\frac{37\!\cdots\!13}{44\!\cdots\!96}a^{9}+\frac{12\!\cdots\!43}{44\!\cdots\!96}a^{8}+\frac{12\!\cdots\!69}{89\!\cdots\!92}a^{7}-\frac{42\!\cdots\!19}{89\!\cdots\!92}a^{6}+\frac{32\!\cdots\!17}{89\!\cdots\!92}a^{5}+\frac{47\!\cdots\!61}{89\!\cdots\!92}a^{4}-\frac{10\!\cdots\!75}{89\!\cdots\!92}a^{3}-\frac{32\!\cdots\!71}{89\!\cdots\!92}a^{2}+\frac{51\!\cdots\!43}{22\!\cdots\!48}a-\frac{18\!\cdots\!69}{56\!\cdots\!62}$, $\frac{21\!\cdots\!73}{22\!\cdots\!48}a^{19}-\frac{13\!\cdots\!69}{44\!\cdots\!96}a^{18}-\frac{58\!\cdots\!47}{22\!\cdots\!48}a^{17}+\frac{31\!\cdots\!95}{44\!\cdots\!96}a^{16}+\frac{67\!\cdots\!17}{11\!\cdots\!24}a^{15}-\frac{23\!\cdots\!97}{44\!\cdots\!96}a^{14}-\frac{94\!\cdots\!93}{22\!\cdots\!48}a^{13}+\frac{69\!\cdots\!32}{28\!\cdots\!81}a^{12}+\frac{52\!\cdots\!19}{22\!\cdots\!48}a^{11}-\frac{21\!\cdots\!49}{28\!\cdots\!81}a^{10}-\frac{16\!\cdots\!01}{22\!\cdots\!48}a^{9}+\frac{17\!\cdots\!63}{11\!\cdots\!24}a^{8}+\frac{17\!\cdots\!97}{11\!\cdots\!24}a^{7}-\frac{10\!\cdots\!79}{44\!\cdots\!96}a^{6}-\frac{10\!\cdots\!15}{56\!\cdots\!62}a^{5}+\frac{89\!\cdots\!33}{44\!\cdots\!96}a^{4}+\frac{25\!\cdots\!87}{22\!\cdots\!48}a^{3}-\frac{60\!\cdots\!19}{44\!\cdots\!96}a^{2}+\frac{37\!\cdots\!21}{11\!\cdots\!24}a-\frac{77\!\cdots\!24}{28\!\cdots\!81}$, $\frac{12\!\cdots\!09}{89\!\cdots\!92}a^{19}+\frac{19\!\cdots\!75}{89\!\cdots\!92}a^{18}-\frac{49\!\cdots\!67}{89\!\cdots\!92}a^{17}+\frac{22\!\cdots\!51}{89\!\cdots\!92}a^{16}+\frac{33\!\cdots\!89}{89\!\cdots\!92}a^{15}-\frac{22\!\cdots\!25}{89\!\cdots\!92}a^{14}-\frac{65\!\cdots\!97}{44\!\cdots\!96}a^{13}+\frac{68\!\cdots\!11}{44\!\cdots\!96}a^{12}+\frac{45\!\cdots\!97}{44\!\cdots\!96}a^{11}-\frac{24\!\cdots\!69}{44\!\cdots\!96}a^{10}+\frac{78\!\cdots\!01}{44\!\cdots\!96}a^{9}+\frac{60\!\cdots\!43}{44\!\cdots\!96}a^{8}-\frac{82\!\cdots\!63}{89\!\cdots\!92}a^{7}-\frac{17\!\cdots\!33}{89\!\cdots\!92}a^{6}+\frac{18\!\cdots\!17}{89\!\cdots\!92}a^{5}+\frac{11\!\cdots\!99}{89\!\cdots\!92}a^{4}-\frac{24\!\cdots\!19}{89\!\cdots\!92}a^{3}+\frac{12\!\cdots\!07}{89\!\cdots\!92}a^{2}-\frac{64\!\cdots\!63}{22\!\cdots\!48}a+\frac{12\!\cdots\!19}{56\!\cdots\!62}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7144225924900 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 7144225924900 \cdot 1}{2\cdot\sqrt{14595833152648338774900083206236247150592}}\cr\approx \mathstrut & 2.83536792936576 \end{aligned}\] (assuming GRH)
Galois group
$\PGL(2,19)$ (as 20T362):
A non-solvable group of order 6840 |
The 21 conjugacy class representatives for $\PGL(2,19)$ |
Character table for $\PGL(2,19)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 40 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $20$ | $20$ | $18{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | $20$ | $18{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | $20$ | R | R | $18{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $20$ | ${\href{/padicField/37.10.0.1}{10} }^{2}$ | $20$ | ${\href{/padicField/43.2.0.1}{2} }^{9}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(19\) | $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
19.19.19.1 | $x^{19} + 38 x + 19$ | $19$ | $1$ | $19$ | $F_{19}$ | $[19/18]_{18}$ | |
\(23\) | 23.2.1.1 | $x^{2} + 115$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
23.2.0.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |