Normalized defining polynomial
\( x^{27} - 36 x^{24} + 752 x^{21} + 528 x^{18} - 2616 x^{15} + 44416 x^{12} + 37248 x^{9} + 11712 x^{6} + \cdots + 64 \)
Invariants
Degree: | $27$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(3537182715531733726396416000000000000000000\) \(\medspace = 2^{52}\cdot 3^{30}\cdot 5^{18}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(37.66\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{25/12}3^{7/6}5^{3/4}\approx 51.05223872742641$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{9}-\frac{1}{4}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{4}a^{4}$, $\frac{1}{24}a^{11}-\frac{1}{24}a^{10}+\frac{1}{24}a^{9}-\frac{5}{12}a^{5}+\frac{5}{12}a^{4}-\frac{5}{12}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{24}a^{12}+\frac{1}{24}a^{9}+\frac{1}{12}a^{6}+\frac{1}{4}a^{3}-\frac{1}{3}$, $\frac{1}{72}a^{13}+\frac{1}{72}a^{12}+\frac{1}{18}a^{10}+\frac{1}{18}a^{9}+\frac{1}{36}a^{7}+\frac{1}{36}a^{6}-\frac{1}{9}a-\frac{1}{9}$, $\frac{1}{144}a^{14}+\frac{1}{72}a^{12}-\frac{1}{72}a^{11}+\frac{1}{24}a^{10}+\frac{1}{72}a^{9}+\frac{1}{72}a^{8}+\frac{1}{36}a^{6}-\frac{1}{12}a^{5}-\frac{5}{12}a^{4}+\frac{5}{12}a^{3}+\frac{5}{18}a^{2}-\frac{1}{3}a+\frac{2}{9}$, $\frac{1}{1728}a^{15}-\frac{1}{432}a^{12}-\frac{7}{144}a^{9}+\frac{2}{27}a^{6}-\frac{119}{432}a^{3}+\frac{13}{108}$, $\frac{1}{1728}a^{16}-\frac{1}{432}a^{13}-\frac{7}{144}a^{10}+\frac{2}{27}a^{7}-\frac{119}{432}a^{4}+\frac{13}{108}a$, $\frac{1}{5184}a^{17}-\frac{1}{5184}a^{16}+\frac{1}{5184}a^{15}-\frac{1}{1296}a^{14}+\frac{1}{1296}a^{13}-\frac{1}{1296}a^{12}-\frac{7}{432}a^{11}+\frac{7}{432}a^{10}-\frac{7}{432}a^{9}+\frac{2}{81}a^{8}-\frac{2}{81}a^{7}+\frac{2}{81}a^{6}-\frac{551}{1296}a^{5}+\frac{551}{1296}a^{4}-\frac{551}{1296}a^{3}-\frac{95}{324}a^{2}+\frac{95}{324}a-\frac{95}{324}$, $\frac{1}{5184}a^{18}-\frac{25}{1296}a^{12}-\frac{13}{324}a^{9}+\frac{25}{144}a^{6}+\frac{1}{162}a^{3}-\frac{14}{81}$, $\frac{1}{15552}a^{19}+\frac{1}{15552}a^{18}-\frac{1}{5184}a^{16}-\frac{1}{5184}a^{15}-\frac{11}{1944}a^{13}-\frac{11}{1944}a^{12}+\frac{11}{3888}a^{10}+\frac{11}{3888}a^{9}+\frac{43}{1296}a^{7}+\frac{43}{1296}a^{6}+\frac{1661}{3888}a^{4}+\frac{1661}{3888}a^{3}-\frac{95}{972}a-\frac{95}{972}$, $\frac{1}{15552}a^{20}-\frac{1}{15552}a^{18}-\frac{1}{5184}a^{16}-\frac{1}{5184}a^{15}+\frac{1}{1944}a^{14}+\frac{1}{1296}a^{13}-\frac{5}{243}a^{12}+\frac{7}{486}a^{11}+\frac{7}{432}a^{10}+\frac{169}{3888}a^{9}+\frac{31}{432}a^{8}-\frac{2}{81}a^{7}-\frac{179}{1296}a^{6}-\frac{121}{243}a^{5}+\frac{551}{1296}a^{4}+\frac{673}{3888}a^{3}-\frac{217}{486}a^{2}+\frac{95}{324}a-\frac{91}{972}$, $\frac{1}{186624}a^{21}+\frac{1}{11664}a^{18}-\frac{5}{93312}a^{15}-\frac{271}{23328}a^{12}+\frac{1391}{46656}a^{9}+\frac{325}{5832}a^{6}-\frac{1369}{7776}a^{3}-\frac{2455}{5832}$, $\frac{1}{1119744}a^{22}-\frac{1}{559872}a^{21}-\frac{5}{279936}a^{19}+\frac{5}{139968}a^{18}+\frac{49}{559872}a^{16}-\frac{49}{279936}a^{15}+\frac{125}{139968}a^{13}-\frac{125}{69984}a^{12}-\frac{16501}{279936}a^{10}-\frac{995}{139968}a^{9}+\frac{11153}{69984}a^{7}+\frac{6343}{34992}a^{6}+\frac{10049}{46656}a^{4}-\frac{4217}{23328}a^{3}-\frac{12409}{34992}a-\frac{5087}{17496}$, $\frac{1}{1119744}a^{23}+\frac{1}{559872}a^{21}-\frac{5}{279936}a^{20}-\frac{5}{139968}a^{18}+\frac{49}{559872}a^{17}+\frac{49}{279936}a^{15}+\frac{125}{139968}a^{14}+\frac{125}{69984}a^{12}-\frac{4837}{279936}a^{11}-\frac{1}{24}a^{10}+\frac{6827}{139968}a^{9}-\frac{6343}{69984}a^{8}-\frac{6343}{34992}a^{6}-\frac{9391}{46656}a^{5}+\frac{5}{12}a^{4}-\frac{5503}{23328}a^{3}-\frac{6577}{34992}a^{2}+\frac{1}{3}a-\frac{745}{17496}$, $\frac{1}{3359232}a^{24}+\frac{1}{419904}a^{21}+\frac{31}{559872}a^{18}-\frac{1}{23328}a^{15}+\frac{4393}{279936}a^{12}+\frac{6305}{104976}a^{9}-\frac{69425}{419904}a^{6}+\frac{23575}{52488}a^{3}-\frac{10237}{26244}$, $\frac{1}{3359232}a^{25}-\frac{1}{3359232}a^{22}-\frac{11}{559872}a^{19}+\frac{1}{15552}a^{18}+\frac{5}{62208}a^{16}-\frac{1}{5184}a^{15}-\frac{965}{279936}a^{13}+\frac{2}{243}a^{12}-\frac{4091}{839808}a^{10}+\frac{227}{3888}a^{9}+\frac{98533}{419904}a^{7}+\frac{79}{1296}a^{6}+\frac{83381}{419904}a^{4}+\frac{1661}{3888}a^{3}+\frac{9605}{104976}a-\frac{203}{972}$, $\frac{1}{10077696}a^{26}-\frac{1}{10077696}a^{25}+\frac{1}{10077696}a^{24}-\frac{1}{10077696}a^{23}+\frac{1}{10077696}a^{22}+\frac{13}{5038848}a^{21}-\frac{47}{1679616}a^{20}+\frac{47}{1679616}a^{19}-\frac{137}{1679616}a^{18}+\frac{17}{186624}a^{17}-\frac{17}{186624}a^{16}-\frac{7}{31104}a^{15}+\frac{2563}{839808}a^{14}+\frac{3269}{839808}a^{13}+\frac{12589}{839808}a^{12}+\frac{16861}{2519424}a^{11}+\frac{53123}{2519424}a^{10}+\frac{39359}{1259712}a^{9}-\frac{119519}{1259712}a^{8}+\frac{137015}{1259712}a^{7}-\frac{222929}{1259712}a^{6}-\frac{305959}{1259712}a^{5}-\frac{323897}{1259712}a^{4}-\frac{44885}{629856}a^{3}+\frac{119009}{314928}a^{2}-\frac{136505}{314928}a+\frac{21745}{157464}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{27049}{1259712}a^{26}-\frac{43979}{10077696}a^{25}+\frac{61997}{10077696}a^{24}-\frac{7816073}{10077696}a^{23}+\frac{1594193}{10077696}a^{22}-\frac{1124431}{5038848}a^{21}+\frac{13638859}{839808}a^{20}-\frac{5578319}{1679616}a^{19}+\frac{7873055}{1679616}a^{18}+\frac{5252971}{559872}a^{17}-\frac{825467}{559872}a^{16}+\frac{61009}{31104}a^{15}-\frac{24001307}{419904}a^{14}+\frac{9843115}{839808}a^{13}-\frac{13900591}{839808}a^{12}+\frac{2420173685}{2519424}a^{11}-\frac{495711101}{2519424}a^{10}+\frac{349928443}{1259712}a^{9}+\frac{430869247}{629856}a^{8}-\frac{142806839}{1259712}a^{7}+\frac{192578495}{1259712}a^{6}+\frac{223762705}{1259712}a^{5}-\frac{33368065}{1259712}a^{4}+\frac{21967091}{629856}a^{3}+\frac{5227309}{314928}a^{2}-\frac{404281}{314928}a+\frac{345353}{157464}$, $\frac{3757}{279936}a^{26}+\frac{475}{62208}a^{25}-\frac{7303}{1119744}a^{24}+\frac{545017}{1119744}a^{23}-\frac{154231}{559872}a^{22}+\frac{16523}{69984}a^{21}-\frac{105989}{10368}a^{20}+\frac{1613383}{279936}a^{19}-\frac{2772379}{559872}a^{18}-\frac{811333}{186624}a^{17}+\frac{1003229}{279936}a^{16}-\frac{42901}{17496}a^{15}+\frac{1680677}{46656}a^{14}-\frac{2829865}{139968}a^{13}+\frac{4903795}{279936}a^{12}-\frac{169593181}{279936}a^{11}+\frac{47686771}{139968}a^{10}-\frac{641218}{2187}a^{9}-\frac{23612189}{69984}a^{8}+\frac{18051137}{69984}a^{7}-\frac{8593363}{46656}a^{6}-\frac{11435021}{139968}a^{5}+\frac{1667629}{23328}a^{4}-\frac{362693}{8748}a^{3}-\frac{299153}{34992}a^{2}+\frac{101767}{17496}a-\frac{7429}{2916}$, $\frac{1315}{209952}a^{26}-\frac{1315}{209952}a^{25}+\frac{1315}{209952}a^{24}-\frac{189901}{839808}a^{23}+\frac{189901}{839808}a^{22}-\frac{189901}{839808}a^{21}+\frac{220829}{46656}a^{20}-\frac{220829}{46656}a^{19}+\frac{220829}{46656}a^{18}+\frac{197765}{69984}a^{17}-\frac{197765}{69984}a^{16}+\frac{197765}{69984}a^{15}-\frac{587663}{34992}a^{14}+\frac{587663}{34992}a^{13}-\frac{587663}{34992}a^{12}+\frac{58763875}{209952}a^{11}-\frac{58763875}{209952}a^{10}+\frac{58763875}{209952}a^{9}+\frac{21516001}{104976}a^{8}-\frac{21516001}{104976}a^{7}+\frac{21516001}{104976}a^{6}+\frac{1181363}{26244}a^{5}-\frac{1181363}{26244}a^{4}+\frac{1181363}{26244}a^{3}+\frac{14615}{6561}a^{2}-\frac{14615}{6561}a+\frac{14615}{6561}$, $\frac{9161}{1679616}a^{24}+\frac{167611}{839808}a^{21}-\frac{1180967}{279936}a^{18}-\frac{9809}{23328}a^{15}+\frac{2147815}{139968}a^{12}-\frac{52707229}{209952}a^{9}-\frac{12056111}{209952}a^{6}+\frac{506137}{26244}a^{3}+\frac{47039}{13122}$, $\frac{3863}{629856}a^{26}-\frac{23743}{2519424}a^{25}-\frac{26993}{10077696}a^{24}+\frac{2217443}{10077696}a^{23}+\frac{858205}{2519424}a^{22}+\frac{121255}{1259712}a^{21}-\frac{3849931}{839808}a^{20}-\frac{2996665}{419904}a^{19}-\frac{3372671}{1679616}a^{18}-\frac{2142965}{559872}a^{17}-\frac{183473}{46656}a^{16}-\frac{54103}{34992}a^{15}+\frac{6735053}{419904}a^{14}+\frac{5277143}{209952}a^{13}+\frac{5888791}{839808}a^{12}-\frac{680939615}{2519424}a^{11}-\frac{265966465}{629856}a^{10}-\frac{37329391}{314928}a^{9}-\frac{165999787}{629856}a^{8}-\frac{91076689}{314928}a^{7}-\frac{135573743}{1259712}a^{6}-\frac{96274087}{1259712}a^{5}-\frac{23248481}{314928}a^{4}-\frac{2541361}{78732}a^{3}-\frac{2118691}{314928}a^{2}-\frac{621713}{78732}a-\frac{245953}{78732}$, $\frac{4717}{186624}a^{26}+\frac{17}{3888}a^{25}+\frac{17405}{1679616}a^{24}-\frac{512939}{559872}a^{23}-\frac{3727}{23328}a^{22}-\frac{629903}{1679616}a^{21}+\frac{5384213}{279936}a^{20}+\frac{39355}{11664}a^{19}+\frac{733813}{93312}a^{18}+\frac{2404867}{279936}a^{17}+\frac{23099}{46656}a^{16}+\frac{1112477}{279936}a^{15}-\frac{9571673}{139968}a^{14}-\frac{137969}{11664}a^{13}-\frac{3912485}{139968}a^{12}+\frac{159493931}{139968}a^{11}+\frac{2339999}{11664}a^{10}+\frac{195493463}{419904}a^{9}+\frac{46181275}{69984}a^{8}+\frac{80371}{1458}a^{7}+\frac{62429747}{209952}a^{6}+\frac{2905951}{23328}a^{5}+\frac{18251}{1296}a^{4}+\frac{12493345}{209952}a^{3}+\frac{93257}{17496}a^{2}+\frac{3559}{2916}a+\frac{144433}{52488}$, $\frac{6545}{279936}a^{26}+\frac{8015}{839808}a^{25}-\frac{34325}{3359232}a^{24}+\frac{471889}{559872}a^{23}-\frac{1159547}{3359232}a^{22}+\frac{77843}{209952}a^{21}-\frac{91361}{5184}a^{20}+\frac{675125}{93312}a^{19}-\frac{4361275}{559872}a^{18}-\frac{1070917}{93312}a^{17}+\frac{2137355}{559872}a^{16}-\frac{222053}{69984}a^{15}+\frac{90179}{1458}a^{14}-\frac{3567091}{139968}a^{13}+\frac{858971}{31104}a^{12}-\frac{145771141}{139968}a^{11}+\frac{359634719}{839808}a^{10}-\frac{6059225}{13122}a^{9}-\frac{28680911}{34992}a^{8}+\frac{59425663}{209952}a^{7}-\frac{104475323}{419904}a^{6}-\frac{15835997}{69984}a^{5}+\frac{30045691}{419904}a^{4}-\frac{2619959}{52488}a^{3}-\frac{374261}{17496}a^{2}+\frac{720943}{104976}a-\frac{92071}{26244}$, $\frac{45161}{5038848}a^{26}-\frac{26381}{10077696}a^{25}+\frac{16619}{10077696}a^{24}+\frac{3276349}{10077696}a^{23}+\frac{474535}{5038848}a^{22}-\frac{299995}{5038848}a^{21}-\frac{1433705}{209952}a^{20}-\frac{3302255}{1679616}a^{19}+\frac{2093033}{1679616}a^{18}-\frac{178471}{62208}a^{17}-\frac{402167}{279936}a^{16}+\frac{208831}{279936}a^{15}+\frac{5124905}{209952}a^{14}+\frac{5833639}{839808}a^{13}-\frac{3743977}{839808}a^{12}-\frac{1019626201}{2519424}a^{11}-\frac{146233831}{1259712}a^{10}+\frac{92833723}{1259712}a^{9}-\frac{17599789}{78732}a^{8}-\frac{126916607}{1259712}a^{7}+\frac{68190089}{1259712}a^{6}-\frac{41828813}{1259712}a^{5}-\frac{16020401}{629856}a^{4}+\frac{6093449}{629856}a^{3}-\frac{52601}{314928}a^{2}-\frac{321383}{157464}a+\frac{88259}{157464}$, $\frac{601}{93312}a^{26}-\frac{4469}{124416}a^{25}-\frac{25427}{1679616}a^{24}+\frac{129889}{559872}a^{23}+\frac{30359}{23328}a^{22}+\frac{461479}{839808}a^{21}-\frac{678467}{139968}a^{20}-\frac{5097107}{186624}a^{19}-\frac{3232831}{279936}a^{18}-\frac{933167}{279936}a^{17}-\frac{295205}{23328}a^{16}-\frac{79369}{17496}a^{15}+\frac{153697}{8748}a^{14}+\frac{9016379}{93312}a^{13}+\frac{1899683}{46656}a^{12}-\frac{40078165}{139968}a^{11}-\frac{9434603}{5832}a^{10}-\frac{143732977}{209952}a^{9}-\frac{8273245}{34992}a^{8}-\frac{44973505}{46656}a^{7}-\frac{75336827}{209952}a^{6}-\frac{742175}{23328}a^{5}-\frac{415609}{1944}a^{4}-\frac{4424695}{52488}a^{3}+\frac{12443}{17496}a^{2}-\frac{36821}{2916}a-\frac{33335}{6561}$, $\frac{5771}{10077696}a^{26}-\frac{34999}{10077696}a^{25}+\frac{5089}{10077696}a^{24}+\frac{104491}{5038848}a^{23}+\frac{319963}{2519424}a^{22}-\frac{93611}{5038848}a^{21}-\frac{730889}{1679616}a^{20}-\frac{4506769}{1679616}a^{19}+\frac{662335}{1679616}a^{18}-\frac{57619}{279936}a^{17}-\frac{23117}{69984}a^{16}-\frac{11743}{279936}a^{15}+\frac{1223233}{839808}a^{14}+\frac{8164865}{839808}a^{13}-\frac{1131971}{839808}a^{12}-\frac{32513251}{1259712}a^{11}-\frac{100558429}{629856}a^{10}+\frac{29675807}{1259712}a^{9}-\frac{19568225}{1259712}a^{8}-\frac{50908417}{1259712}a^{7}+\frac{529447}{1259712}a^{6}-\frac{5180189}{629856}a^{5}+\frac{685975}{78732}a^{4}+\frac{887779}{629856}a^{3}-\frac{449039}{157464}a^{2}+\frac{185437}{78732}a+\frac{137353}{157464}$, $\frac{62149}{5038848}a^{26}-\frac{123581}{10077696}a^{25}-\frac{3889}{2519424}a^{24}-\frac{2228323}{5038848}a^{23}+\frac{2235421}{5038848}a^{22}+\frac{140077}{2519424}a^{21}+\frac{7734139}{839808}a^{20}-\frac{15620915}{1679616}a^{19}-\frac{7621}{6561}a^{18}+\frac{2212327}{279936}a^{17}-\frac{1351277}{279936}a^{16}-\frac{37477}{46656}a^{15}-\frac{13515737}{419904}a^{14}+\frac{27703063}{839808}a^{13}+\frac{895439}{209952}a^{12}+\frac{683777059}{1259712}a^{11}-\frac{693531661}{1259712}a^{10}-\frac{43206817}{629856}a^{9}+\frac{341518963}{629856}a^{8}-\frac{452598923}{1259712}a^{7}-\frac{8970269}{157464}a^{6}+\frac{100566497}{629856}a^{5}-\frac{48281243}{629856}a^{4}-\frac{1373333}{314928}a^{3}+\frac{2272913}{157464}a^{2}-\frac{1166969}{157464}a+\frac{110923}{78732}$, $\frac{7927}{10077696}a^{26}+\frac{63691}{5038848}a^{25}-\frac{49693}{5038848}a^{24}-\frac{171089}{5038848}a^{23}-\frac{4601093}{10077696}a^{22}+\frac{225635}{629856}a^{21}+\frac{1338625}{1679616}a^{20}+\frac{4014515}{419904}a^{19}-\frac{6325825}{839808}a^{18}-\frac{1096243}{279936}a^{17}+\frac{1028629}{186624}a^{16}-\frac{386743}{139968}a^{15}-\frac{2592893}{839808}a^{14}-\frac{879275}{26244}a^{13}+\frac{11220635}{419904}a^{12}+\frac{63378185}{1259712}a^{11}+\frac{1424774369}{2519424}a^{10}-\frac{140673109}{314928}a^{9}-\frac{287167943}{1259712}a^{8}+\frac{126583577}{314928}a^{7}-\frac{140094157}{629856}a^{6}-\frac{53678957}{629856}a^{5}+\frac{142365229}{1259712}a^{4}-\frac{13164787}{314928}a^{3}-\frac{2008631}{157464}a^{2}+\frac{3757537}{314928}a-\frac{156289}{78732}$, $\frac{5173}{10077696}a^{26}-\frac{39409}{10077696}a^{25}-\frac{12359}{10077696}a^{24}-\frac{159577}{10077696}a^{23}+\frac{709577}{5038848}a^{22}+\frac{56599}{1259712}a^{21}+\frac{487009}{1679616}a^{20}-\frac{4941811}{1679616}a^{19}-\frac{1596581}{1679616}a^{18}+\frac{1282507}{559872}a^{17}-\frac{569201}{279936}a^{16}-\frac{7325}{139968}a^{15}-\frac{501545}{839808}a^{14}+\frac{8621867}{839808}a^{13}+\frac{2898817}{839808}a^{12}+\frac{39320245}{2519424}a^{11}-\frac{218940305}{1259712}a^{10}-\frac{1114888}{19683}a^{9}+\frac{175118929}{1259712}a^{8}-\frac{181094947}{1259712}a^{7}-\frac{13445165}{1259712}a^{6}+\frac{83038337}{1259712}a^{5}-\frac{26838175}{629856}a^{4}+\frac{1286471}{314928}a^{3}+\frac{2741513}{314928}a^{2}-\frac{662533}{157464}a+\frac{20783}{19683}$, $\frac{64615}{2519424}a^{26}-\frac{28361}{1259712}a^{25}+\frac{25393}{2519424}a^{24}-\frac{2336899}{2519424}a^{23}+\frac{4110155}{5038848}a^{22}-\frac{229987}{629856}a^{21}+\frac{8163259}{419904}a^{20}-\frac{3594095}{209952}a^{19}+\frac{402203}{52488}a^{18}+\frac{1442377}{139968}a^{17}-\frac{2221775}{279936}a^{16}+\frac{499717}{139968}a^{15}-\frac{14449307}{209952}a^{14}+\frac{12743663}{209952}a^{13}-\frac{5701703}{209952}a^{12}+\frac{724721731}{629856}a^{11}-\frac{1277357243}{1259712}a^{10}+\frac{142941833}{314928}a^{9}+\frac{240523987}{314928}a^{8}-\frac{47597743}{78732}a^{7}+\frac{42778721}{157464}a^{6}+\frac{54263999}{314928}a^{5}-\frac{79375657}{629856}a^{4}+\frac{18030989}{314928}a^{3}+\frac{1126835}{78732}a^{2}-\frac{1437397}{157464}a+\frac{314045}{78732}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 54642144375.730865 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{12}\cdot 54642144375.730865 \cdot 3}{2\cdot\sqrt{3537182715531733726396416000000000000000000}}\cr\approx \mathstrut & 1.31989278152437 \end{aligned}\] (assuming GRH)
Galois group
$\He_3:\GL(2,3)$ (as 27T294):
A solvable group of order 1296 |
The 18 conjugacy class representatives for $\He_3:\GL(2,3)$ |
Character table for $\He_3:\GL(2,3)$ |
Intermediate fields
9.3.2239488000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 27 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 27.3.4852102490441335701504000000000000000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.9.0.1}{9} }^{3}$ | ${\href{/padicField/11.8.0.1}{8} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.9.0.1}{9} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{4}{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.8.0.1}{8} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.8.0.1}{8} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.9.0.1}{9} }^{3}$ | ${\href{/padicField/41.8.0.1}{8} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.12.0.1}{12} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.2.0.1}{2} }^{12}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.8.0.1}{8} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }^{4}{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
Deg $24$ | $24$ | $1$ | $50$ | ||||
\(3\) | 3.9.9.6 | $x^{9} - 6 x^{8} + 45 x^{7} + 594 x^{6} + 99 x^{5} + 108 x^{4} - 54 x^{3} + 27 x^{2} + 81 x + 27$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
Deg $18$ | $6$ | $3$ | $21$ | ||||
\(5\) | $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.8.6.4 | $x^{8} - 20 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
5.8.6.4 | $x^{8} - 20 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
5.8.6.4 | $x^{8} - 20 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |