sage: x = polygen(QQ); K.<a> = NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216)
gp: K = bnfinit(y^6 + 81*y^4 + 12960*y^2 + 297216, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^6 + 81*x^4 + 12960*x^2 + 297216)
x 6 + 81 x 4 + 12960 x 2 + 297216 x^{6} + 81x^{4} + 12960x^{2} + 297216 x 6 + 8 1 x 4 + 1 2 9 6 0 x 2 + 2 9 7 2 1 6
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
1 1 1 , a a a , 1 3 a 2 \frac{1}{3}a^{2} 3 1 a 2 , 1 36 a 3 − 5 12 a \frac{1}{36}a^{3}-\frac{5}{12}a 3 6 1 a 3 − 1 2 5 a , 1 3456 a 4 − 1 72 a 3 − 85 1152 a 2 + 5 24 a − 11 24 \frac{1}{3456}a^{4}-\frac{1}{72}a^{3}-\frac{85}{1152}a^{2}+\frac{5}{24}a-\frac{11}{24} 3 4 5 6 1 a 4 − 7 2 1 a 3 − 1 1 5 2 8 5 a 2 + 2 4 5 a − 2 4 1 1 , 1 13824 a 5 + 43 4608 a 3 − 1 6 a 2 − 9 32 a − 1 2 \frac{1}{13824}a^{5}+\frac{43}{4608}a^{3}-\frac{1}{6}a^{2}-\frac{9}{32}a-\frac{1}{2} 1 3 8 2 4 1 a 5 + 4 6 0 8 4 3 a 3 − 6 1 a 2 − 3 2 9 a − 2 1
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
oscar: basis(OK)
Ideal class group : C 6 × C 18 C_{6}\times C_{18} C 6 × C 1 8 , which has order 108 108 1 0 8
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
oscar: class_group(K)
Narrow class group : C 6 × C 18 C_{6}\times C_{18} C 6 × C 1 8 , which has order 108 108 1 0 8
sage: K.narrow_class_group().invariants()
gp: bnfnarrow(K)
magma: NarrowClassGroup(K);
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank : 2 2 2
sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
Torsion generator :
− 1 -1 − 1
(order 2 2 2 )
sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
Fundamental units :
40964387949 128 a 5 − 515594801729 432 a 4 + 2543965591303 384 a 3 + 39643626166325 144 a 2 − 333843309099 8 a + 23653467680086 3 \frac{40964387949}{128}a^{5}-\frac{515594801729}{432}a^{4}+\frac{2543965591303}{384}a^{3}+\frac{39643626166325}{144}a^{2}-\frac{333843309099}{8}a+\frac{23653467680086}{3} 1 2 8 4 0 9 6 4 3 8 7 9 4 9 a 5 − 4 3 2 5 1 5 5 9 4 8 0 1 7 2 9 a 4 + 3 8 4 2 5 4 3 9 6 5 5 9 1 3 0 3 a 3 + 1 4 4 3 9 6 4 3 6 2 6 1 6 6 3 2 5 a 2 − 8 3 3 3 8 4 3 3 0 9 0 9 9 a + 3 2 3 6 5 3 4 6 7 6 8 0 0 8 6 , 40972006553 216 a 5 − 1859198607179 1728 a 4 − 1339297808971 72 a 3 − 230781104071705 576 a 2 − 2420403587207 4 a − 115293628568507 12 \frac{40972006553}{216}a^{5}-\frac{1859198607179}{1728}a^{4}-\frac{1339297808971}{72}a^{3}-\frac{230781104071705}{576}a^{2}-\frac{2420403587207}{4}a-\frac{115293628568507}{12} 2 1 6 4 0 9 7 2 0 0 6 5 5 3 a 5 − 1 7 2 8 1 8 5 9 1 9 8 6 0 7 1 7 9 a 4 − 7 2 1 3 3 9 2 9 7 8 0 8 9 7 1 a 3 − 5 7 6 2 3 0 7 8 1 1 0 4 0 7 1 7 0 5 a 2 − 4 2 4 2 0 4 0 3 5 8 7 2 0 7 a − 1 2 1 1 5 2 9 3 6 2 8 5 6 8 5 0 7
sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
Regulator : 4082.63150081 4082.63150081 4 0 8 2 . 6 3 1 5 0 0 8 1
sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
lim s → 1 ( s − 1 ) ζ K ( s ) = ( 2 r 1 ⋅ ( 2 π ) r 2 ⋅ R ⋅ h w ⋅ ∣ D ∣ ≈ ( 2 0 ⋅ ( 2 π ) 3 ⋅ 4082.63150081 ⋅ 108 2 ⋅ 17904554058816 ≈ ( 12.9238465472
\begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 4082.63150081 \cdot 108}{2\cdot\sqrt{17904554058816}}\cr\approx \mathstrut & 12.9238465472
\end{aligned} s → 1 lim ( s − 1 ) ζ K ( s ) = ( ≈ ( ≈ ( w ⋅ ∣ D ∣ 2 r 1 ⋅ ( 2 π ) r 2 ⋅ R ⋅ h 2 ⋅ 1 7 9 0 4 5 5 4 0 5 8 8 1 6 2 0 ⋅ ( 2 π ) 3 ⋅ 4 0 8 2 . 6 3 1 5 0 0 8 1 ⋅ 1 0 8 1 2 . 9 2 3 8 4 6 5 4 7 2
sage: # self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
gp: \\ self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^6 + 81*x^4 + 12960*x^2 + 297216, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
magma: /* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
oscar: # self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
S 3 S_3 S 3 (as 6T2 ):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
p p p
2 2 2
3 3 3
5 5 5
7 7 7
11 11 1 1
13 13 1 3
17 17 1 7
19 19 1 9
23 23 2 3
29 29 2 9
31 31 3 1
37 37 3 7
41 41 4 1
43 43 4 3
47 47 4 7
53 53 5 3
59 59 5 9
Cycle type
R
R
3 2 {\href{/padicField/5.3.0.1}{3} }^{2} 3 2
3 2 {\href{/padicField/7.3.0.1}{3} }^{2} 3 2
1 6 {\href{/padicField/11.1.0.1}{1} }^{6} 1 6
1 6 {\href{/padicField/13.1.0.1}{1} }^{6} 1 6
2 3 {\href{/padicField/17.2.0.1}{2} }^{3} 2 3
R
3 2 {\href{/padicField/23.3.0.1}{3} }^{2} 3 2
3 2 {\href{/padicField/29.3.0.1}{3} }^{2} 3 2
2 3 {\href{/padicField/31.2.0.1}{2} }^{3} 2 3
2 3 {\href{/padicField/37.2.0.1}{2} }^{3} 2 3
2 3 {\href{/padicField/41.2.0.1}{2} }^{3} 2 3
R
1 6 {\href{/padicField/47.1.0.1}{1} }^{6} 1 6
2 3 {\href{/padicField/53.2.0.1}{2} }^{3} 2 3
3 2 {\href{/padicField/59.3.0.1}{3} }^{2} 3 2
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
sage: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
magma: // to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
oscar: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
(0) (0) (2) (3) (5) (7) (11) (13) (17) (19) (23) (29) (31) (37) (41) (43) (47) (53) (59)