Properties

Label 6.0.17904554058816.3
Degree 66
Signature [0,3][0, 3]
Discriminant 1.790×1013-1.790\times 10^{13}
Root discriminant 161.74161.74
Ramified primes 2,3,19,432,3,19,43
Class number 108108
Class group [6, 18]
Galois group S3S_3 (as 6T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216)
 
Copy content gp:K = bnfinit(y^6 + 81*y^4 + 12960*y^2 + 297216, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^6 + 81*x^4 + 12960*x^2 + 297216)
 

x6+81x4+12960x2+297216 x^{6} + 81x^{4} + 12960x^{2} + 297216 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  66
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [0,3][0, 3]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   17904554058816-17904554058816 =2633194433\medspace = -\,2^{6}\cdot 3^{3}\cdot 19^{4}\cdot 43^{3} Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  161.74161.74
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  231/2192/3431/2161.743654478529552\cdot 3^{1/2}19^{2/3}43^{1/2}\approx 161.74365447852955
Ramified primes:   22, 33, 1919, 4343 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(129)\Q(\sqrt{-129})
Aut(K/Q)\Aut(K/\Q) == Gal(K/Q)\Gal(K/\Q):   S3S_3
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois over Q\Q.
This is not a CM field.
Maximal CM subfield:  Q(129)\Q(\sqrt{-129})

Integral basis (with respect to field generator aa)

11, aa, 13a2\frac{1}{3}a^{2}, 136a3512a\frac{1}{36}a^{3}-\frac{5}{12}a, 13456a4172a3851152a2+524a1124\frac{1}{3456}a^{4}-\frac{1}{72}a^{3}-\frac{85}{1152}a^{2}+\frac{5}{24}a-\frac{11}{24}, 113824a5+434608a316a2932a12\frac{1}{13824}a^{5}+\frac{43}{4608}a^{3}-\frac{1}{6}a^{2}-\frac{9}{32}a-\frac{1}{2} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  88
Inessential primes:  22

Class group and class number

Ideal class group:  C6×C18C_{6}\times C_{18}, which has order 108108
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  C6×C18C_{6}\times C_{18}, which has order 108108
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  22
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   40964387949128a5515594801729432a4+2543965591303384a3+39643626166325144a23338433090998a+236534676800863\frac{40964387949}{128}a^{5}-\frac{515594801729}{432}a^{4}+\frac{2543965591303}{384}a^{3}+\frac{39643626166325}{144}a^{2}-\frac{333843309099}{8}a+\frac{23653467680086}{3}, 40972006553216a518591986071791728a4133929780897172a3230781104071705576a224204035872074a11529362856850712\frac{40972006553}{216}a^{5}-\frac{1859198607179}{1728}a^{4}-\frac{1339297808971}{72}a^{3}-\frac{230781104071705}{576}a^{2}-\frac{2420403587207}{4}a-\frac{115293628568507}{12} Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  4082.63150081 4082.63150081
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)34082.63150081108217904554058816(12.9238465472 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 4082.63150081 \cdot 108}{2\cdot\sqrt{17904554058816}}\cr\approx \mathstrut & 12.9238465472 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^6 + 81*x^4 + 12960*x^2 + 297216, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 + 81*x^4 + 12960*x^2 + 297216); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S3S_3 (as 6T2):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6
The 3 conjugacy class representatives for S3S_3
Character table for S3S_3

Intermediate fields

Q(129)\Q(\sqrt{-129}) , 3.1.186276.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling algebras

Twin sextic algebra: 3.1.186276.1 ×\times Q\Q ×\times Q\Q ×\times Q\Q
Degree 3 sibling: 3.1.186276.1
Minimal sibling: 3.1.186276.1

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R R 32{\href{/padicField/5.3.0.1}{3} }^{2} 32{\href{/padicField/7.3.0.1}{3} }^{2} 16{\href{/padicField/11.1.0.1}{1} }^{6} 16{\href{/padicField/13.1.0.1}{1} }^{6} 23{\href{/padicField/17.2.0.1}{2} }^{3} R 32{\href{/padicField/23.3.0.1}{3} }^{2} 32{\href{/padicField/29.3.0.1}{3} }^{2} 23{\href{/padicField/31.2.0.1}{2} }^{3} 23{\href{/padicField/37.2.0.1}{2} }^{3} 23{\href{/padicField/41.2.0.1}{2} }^{3} R 16{\href{/padicField/47.1.0.1}{1} }^{6} 23{\href{/padicField/53.2.0.1}{2} }^{3} 32{\href{/padicField/59.3.0.1}{3} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.1.2.2a1.1x2+2x+2x^{2} + 2 x + 2221122C2C_2[2][2]
2.1.2.2a1.1x2+2x+2x^{2} + 2 x + 2221122C2C_2[2][2]
2.1.2.2a1.1x2+2x+2x^{2} + 2 x + 2221122C2C_2[2][2]
33 Copy content Toggle raw display 3.1.2.1a1.1x2+3x^{2} + 3221111C2C_2[ ]2[\ ]_{2}
3.1.2.1a1.1x2+3x^{2} + 3221111C2C_2[ ]2[\ ]_{2}
3.1.2.1a1.1x2+3x^{2} + 3221111C2C_2[ ]2[\ ]_{2}
1919 Copy content Toggle raw display 19.1.3.2a1.1x3+19x^{3} + 19331122C3C_3[ ]3[\ ]_{3}
19.1.3.2a1.1x3+19x^{3} + 19331122C3C_3[ ]3[\ ]_{3}
4343 Copy content Toggle raw display 43.1.2.1a1.2x2+129x^{2} + 129221111C2C_2[ ]2[\ ]_{2}
43.1.2.1a1.2x2+129x^{2} + 129221111C2C_2[ ]2[\ ]_{2}
43.1.2.1a1.2x2+129x^{2} + 129221111C2C_2[ ]2[\ ]_{2}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)