Properties

Label 6.0.647340405907.3
Degree 66
Signature [0,3][0, 3]
Discriminant 647340405907-647340405907
Root discriminant 93.0193.01
Ramified primes 13,28313,283
Class number 8181
Class group [3, 3, 9]
Galois group S3S_3 (as 6T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928)
 
gp: K = bnfinit(y^6 - y^5 + 63*y^4 + 210*y^3 + 2460*y^2 + 5968*y + 36928, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928)
 

x6x5+63x4+210x3+2460x2+5968x+36928 x^{6} - x^{5} + 63x^{4} + 210x^{3} + 2460x^{2} + 5968x + 36928 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  66
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [0,3][0, 3]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   647340405907-647340405907 =1342833\medspace = -\,13^{4}\cdot 283^{3} Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  93.0193.01
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  132/32831/293.0083884180597213^{2/3}283^{1/2}\approx 93.00838841805972
Ramified primes:   1313, 283283 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(283)\Q(\sqrt{-283})
Aut(K/Q)\Aut(K/\Q) == Gal(K/Q)\Gal(K/\Q):   S3S_3
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, 12a312a212a\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a, 112a4+112a314a2+13a13\frac{1}{12}a^{4}+\frac{1}{12}a^{3}-\frac{1}{4}a^{2}+\frac{1}{3}a-\frac{1}{3}, 11538160a5+461512720a4+23923307632a3+24415304a2+3416976908a+2176396135\frac{1}{1538160}a^{5}+\frac{461}{512720}a^{4}+\frac{23923}{307632}a^{3}+\frac{2441}{5304}a^{2}+\frac{34169}{76908}a+\frac{21763}{96135} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  44
Inessential primes:  22

Class group and class number

C3×C3×C9C_{3}\times C_{3}\times C_{9}, which has order 8181

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  22
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   461256360a53337256360a4+502351272a331884a2+89076409a+22963132045\frac{461}{256360}a^{5}-\frac{3337}{256360}a^{4}+\frac{5023}{51272}a^{3}-\frac{31}{884}a^{2}+\frac{8907}{6409}a+\frac{229631}{32045}, 710608a54310608a4+15710608a36795304a2+1133884a14293663\frac{7}{10608}a^{5}-\frac{43}{10608}a^{4}+\frac{157}{10608}a^{3}-\frac{679}{5304}a^{2}+\frac{1133}{884}a-\frac{14293}{663} Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  114.647869662 114.647869662
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)3114.647869662812647340405907(1.43150958292 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 114.647869662 \cdot 81}{2\cdot\sqrt{647340405907}}\cr\approx \mathstrut & 1.43150958292 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - x^5 + 63*x^4 + 210*x^3 + 2460*x^2 + 5968*x + 36928);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S3S_3 (as 6T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6
The 3 conjugacy class representatives for S3S_3
Character table for S3S_3

Intermediate fields

Q(283)\Q(\sqrt{-283}) , 3.1.47827.2 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling algebras

Twin sextic algebra: 3.1.47827.2 ×\times Q\Q ×\times Q\Q ×\times Q\Q
Degree 3 sibling: 3.1.47827.2
Minimal sibling: 3.1.47827.2

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type 23{\href{/padicField/2.2.0.1}{2} }^{3} 23{\href{/padicField/3.2.0.1}{2} }^{3} 23{\href{/padicField/5.2.0.1}{2} }^{3} 32{\href{/padicField/7.3.0.1}{3} }^{2} 16{\href{/padicField/11.1.0.1}{1} }^{6} R 23{\href{/padicField/17.2.0.1}{2} }^{3} 23{\href{/padicField/19.2.0.1}{2} }^{3} 32{\href{/padicField/23.3.0.1}{3} }^{2} 16{\href{/padicField/29.1.0.1}{1} }^{6} 23{\href{/padicField/31.2.0.1}{2} }^{3} 23{\href{/padicField/37.2.0.1}{2} }^{3} 16{\href{/padicField/41.1.0.1}{1} }^{6} 23{\href{/padicField/43.2.0.1}{2} }^{3} 23{\href{/padicField/47.2.0.1}{2} }^{3} 23{\href{/padicField/53.2.0.1}{2} }^{3} 32{\href{/padicField/59.3.0.1}{3} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
1313 Copy content Toggle raw display 13.1.3.2a1.1x3+13x^{3} + 13331122C3C_3[ ]3[\ ]_{3}
13.1.3.2a1.1x3+13x^{3} + 13331122C3C_3[ ]3[\ ]_{3}
283283 Copy content Toggle raw display Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}
Deg 22221111C2C_2[ ]2[\ ]_{2}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)