Properties

Label 6.6.11145187664.1
Degree $6$
Signature $[6, 0]$
Discriminant $11145187664$
Root discriminant \(47.26\)
Ramified primes $2,13,29$
Class number $3$
Class group [3]
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689)
 
gp: K = bnfinit(y^6 - y^5 - 56*y^4 + 51*y^3 + 442*y^2 - 91*y - 689, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689)
 

\( x^{6} - x^{5} - 56x^{4} + 51x^{3} + 442x^{2} - 91x - 689 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $6$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11145187664\) \(\medspace = 2^{4}\cdot 13^{4}\cdot 29^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(47.26\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}13^{2/3}29^{1/2}\approx 47.26226862497353$
Ramified primes:   \(2\), \(13\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{29}) \)
$\card{ \Gal(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{203}a^{4}-\frac{101}{203}a^{3}+\frac{13}{29}a^{2}+\frac{83}{203}a-\frac{81}{203}$, $\frac{1}{609}a^{5}+\frac{1}{609}a^{4}-\frac{88}{203}a^{3}+\frac{9}{203}a^{2}+\frac{265}{609}a+\frac{61}{609}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10}{609}a^{5}-\frac{17}{609}a^{4}-\frac{6}{7}a^{3}+\frac{286}{203}a^{2}+\frac{2236}{609}a-\frac{248}{609}$, $\frac{1}{203}a^{5}-\frac{1}{203}a^{4}-\frac{62}{203}a^{3}+\frac{48}{203}a^{2}+\frac{708}{203}a+\frac{20}{203}$, $\frac{10}{609}a^{5}-\frac{17}{609}a^{4}-\frac{6}{7}a^{3}+\frac{286}{203}a^{2}+\frac{2845}{609}a-\frac{2075}{609}$, $\frac{1}{87}a^{5}+\frac{16}{609}a^{4}-\frac{107}{203}a^{3}-\frac{39}{29}a^{2}+\frac{166}{609}a+\frac{916}{609}$, $\frac{16}{609}a^{5}+\frac{1}{87}a^{4}-\frac{293}{203}a^{3}-\frac{129}{203}a^{2}+\frac{934}{87}a+\frac{7795}{609}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 897.441226302 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{0}\cdot 897.441226302 \cdot 3}{2\cdot\sqrt{11145187664}}\cr\approx \mathstrut & 0.816081544234 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 - x^5 - 56*x^4 + 51*x^3 + 442*x^2 - 91*x - 689);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3$ (as 6T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6
The 3 conjugacy class representatives for $S_3$
Character table for $S_3$

Intermediate fields

\(\Q(\sqrt{29}) \), 3.3.19604.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling algebras

Twin sextic algebra: 3.3.19604.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\)
Degree 3 sibling: 3.3.19604.1
Minimal sibling: 3.3.19604.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.2.0.1}{2} }^{3}$ ${\href{/padicField/5.3.0.1}{3} }^{2}$ ${\href{/padicField/7.1.0.1}{1} }^{6}$ ${\href{/padicField/11.2.0.1}{2} }^{3}$ R ${\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.2.0.1}{2} }^{3}$ ${\href{/padicField/23.3.0.1}{3} }^{2}$ R ${\href{/padicField/31.2.0.1}{2} }^{3}$ ${\href{/padicField/37.2.0.1}{2} }^{3}$ ${\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.2.0.1}{2} }^{3}$ ${\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.1.0.1}{1} }^{6}$ ${\href{/padicField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(13\) Copy content Toggle raw display 13.3.2.2$x^{3} + 13$$3$$1$$2$$C_3$$[\ ]_{3}$
13.3.2.2$x^{3} + 13$$3$$1$$2$$C_3$$[\ ]_{3}$
\(29\) Copy content Toggle raw display 29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$