Normalized defining polynomial
\( x^{8} - 2x^{7} + 7x^{6} + 35x^{4} - 14x^{3} + 105x^{2} + 96x + 452 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(139296416000\) \(\medspace = 2^{8}\cdot 5^{3}\cdot 7^{6}\cdot 37\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(24.72\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{1/2}7^{3/4}37^{1/2}\approx 117.0683210408118$ | ||
Ramified primes: | \(2\), \(5\), \(7\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{185}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{14}a^{4}-\frac{1}{14}a^{3}+\frac{3}{14}a^{2}+\frac{3}{14}a+\frac{1}{7}$, $\frac{1}{14}a^{5}+\frac{1}{7}a^{3}+\frac{3}{7}a^{2}+\frac{5}{14}a+\frac{1}{7}$, $\frac{1}{28}a^{6}-\frac{3}{14}a^{3}-\frac{1}{28}a^{2}+\frac{5}{14}a-\frac{1}{7}$, $\frac{1}{364}a^{7}-\frac{3}{182}a^{6}-\frac{2}{91}a^{5}+\frac{3}{182}a^{4}+\frac{9}{52}a^{3}-\frac{34}{91}a^{2}-\frac{10}{91}a-\frac{27}{91}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{4}$, which has order $4$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{1}{14} a^{4} - \frac{1}{14} a^{3} + \frac{3}{14} a^{2} + \frac{3}{14} a + \frac{8}{7} \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{182}a^{7}+\frac{1}{364}a^{6}-\frac{4}{91}a^{5}+\frac{45}{182}a^{4}-\frac{15}{182}a^{3}-\frac{51}{364}a^{2}+\frac{71}{91}a+\frac{22}{13}$, $\frac{11}{182}a^{7}-\frac{93}{364}a^{6}+\frac{60}{91}a^{5}-\frac{32}{91}a^{4}+\frac{15}{91}a^{3}-\frac{587}{364}a^{2}+\frac{1497}{182}a-\frac{555}{91}$, $\frac{1}{364}a^{7}+\frac{33}{364}a^{6}+\frac{11}{91}a^{5}+\frac{55}{182}a^{4}+\frac{11}{364}a^{3}+\frac{813}{364}a^{2}+\frac{458}{91}a+\frac{740}{91}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 300.977047516 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 300.977047516 \cdot 4}{4\cdot\sqrt{139296416000}}\cr\approx \mathstrut & 1.25684835133 \end{aligned}\]
Galois group
$S_4\wr C_2$ (as 8T47):
A solvable group of order 1152 |
The 20 conjugacy class representatives for $S_4\wr C_2$ |
Character table for $S_4\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | R | R | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{5}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.8.0.1}{8} }$ | R | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(5\) | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
\(7\) | 7.8.6.3 | $x^{8} - 154 x^{4} - 1421$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
\(37\) | $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.3.0.1 | $x^{3} + 6 x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |