Properties

Label 8.0.139296416000.1
Degree 88
Signature [0,4][0, 4]
Discriminant 139296416000139296416000
Root discriminant 24.7224.72
Ramified primes 2,5,7,372,5,7,37
Class number 44
Class group [4]
Galois group S4C2S_4\wr C_2 (as 8T47)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452)
 
gp: K = bnfinit(y^8 - 2*y^7 + 7*y^6 + 35*y^4 - 14*y^3 + 105*y^2 + 96*y + 452, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452)
 

x82x7+7x6+35x414x3+105x2+96x+452 x^{8} - 2x^{7} + 7x^{6} + 35x^{4} - 14x^{3} + 105x^{2} + 96x + 452 Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  88
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  [0,4][0, 4]
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   139296416000139296416000 =28537637\medspace = 2^{8}\cdot 5^{3}\cdot 7^{6}\cdot 37 Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  24.7224.72
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  251/273/4371/2117.06832104081182\cdot 5^{1/2}7^{3/4}37^{1/2}\approx 117.0683210408118
Ramified primes:   22, 55, 77, 3737 Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(185)\Q(\sqrt{185})
Aut(K/Q)\Aut(K/\Q):   C1C_1
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, 12a312a\frac{1}{2}a^{3}-\frac{1}{2}a, 114a4114a3+314a2+314a+17\frac{1}{14}a^{4}-\frac{1}{14}a^{3}+\frac{3}{14}a^{2}+\frac{3}{14}a+\frac{1}{7}, 114a5+17a3+37a2+514a+17\frac{1}{14}a^{5}+\frac{1}{7}a^{3}+\frac{3}{7}a^{2}+\frac{5}{14}a+\frac{1}{7}, 128a6314a3128a2+514a17\frac{1}{28}a^{6}-\frac{3}{14}a^{3}-\frac{1}{28}a^{2}+\frac{5}{14}a-\frac{1}{7}, 1364a73182a6291a5+3182a4+952a33491a21091a2791\frac{1}{364}a^{7}-\frac{3}{182}a^{6}-\frac{2}{91}a^{5}+\frac{3}{182}a^{4}+\frac{9}{52}a^{3}-\frac{34}{91}a^{2}-\frac{10}{91}a-\frac{27}{91} Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

C4C_{4}, which has order 44

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  33
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   114a4114a3+314a2+314a+87 \frac{1}{14} a^{4} - \frac{1}{14} a^{3} + \frac{3}{14} a^{2} + \frac{3}{14} a + \frac{8}{7}  (order 44) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   1182a7+1364a6491a5+45182a415182a351364a2+7191a+2213\frac{1}{182}a^{7}+\frac{1}{364}a^{6}-\frac{4}{91}a^{5}+\frac{45}{182}a^{4}-\frac{15}{182}a^{3}-\frac{51}{364}a^{2}+\frac{71}{91}a+\frac{22}{13}, 11182a793364a6+6091a53291a4+1591a3587364a2+1497182a55591\frac{11}{182}a^{7}-\frac{93}{364}a^{6}+\frac{60}{91}a^{5}-\frac{32}{91}a^{4}+\frac{15}{91}a^{3}-\frac{587}{364}a^{2}+\frac{1497}{182}a-\frac{555}{91}, 1364a7+33364a6+1191a5+55182a4+11364a3+813364a2+45891a+74091\frac{1}{364}a^{7}+\frac{33}{364}a^{6}+\frac{11}{91}a^{5}+\frac{55}{182}a^{4}+\frac{11}{364}a^{3}+\frac{813}{364}a^{2}+\frac{458}{91}a+\frac{740}{91} Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  300.977047516 300.977047516
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)4300.97704751644139296416000(1.25684835133 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 300.977047516 \cdot 4}{4\cdot\sqrt{139296416000}}\cr\approx \mathstrut & 1.25684835133 \end{aligned}

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 2*x^7 + 7*x^6 + 35*x^4 - 14*x^3 + 105*x^2 + 96*x + 452);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

S4C2S_4\wr C_2 (as 8T47):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 1152
The 20 conjugacy class representatives for S4C2S_4\wr C_2
Character table for S4C2S_4\wr C_2

Intermediate fields

Q(1)\Q(\sqrt{-1})

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 12 siblings: data not computed
Degree 16 siblings: data not computed
Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type R 8{\href{/padicField/3.8.0.1}{8} } R R 6,2{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} } 3,15{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{5} 32,12{\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2} 8{\href{/padicField/19.8.0.1}{8} } 42{\href{/padicField/23.4.0.1}{4} }^{2} 4,3,1{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} } 8{\href{/padicField/31.8.0.1}{8} } R 4,2,12{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2} 6,2{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} } 8{\href{/padicField/47.8.0.1}{8} } 4,3,1{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} } 8{\href{/padicField/59.8.0.1}{8} }

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of [ei,fi][e_i,f_i] for the factorization of the ideal pOKp\mathcal{O}_K for p=7p=7 in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
22 Copy content Toggle raw display 2.1.2.2a1.1x2+2x+2x^{2} + 2 x + 2221122C2C_2[2][2]
2.3.2.6a1.1x6+2x4+4x3+x2+4x+5x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 5223366C6C_6[2]3[2]^{3}
55 Copy content Toggle raw display 5.1.2.1a1.2x2+10x^{2} + 10221111C2C_2[ ]2[\ ]_{2}
5.1.2.1a1.2x2+10x^{2} + 10221111C2C_2[ ]2[\ ]_{2}
5.1.2.1a1.1x2+5x^{2} + 5221111C2C_2[ ]2[\ ]_{2}
5.2.1.0a1.1x2+4x+2x^{2} + 4 x + 2112200C2C_2[ ]2[\ ]^{2}
77 Copy content Toggle raw display 7.2.4.6a1.1x8+24x7+228x6+1080x5+2646x4+3240x3+2052x2+655x+81x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2646 x^{4} + 3240 x^{3} + 2052 x^{2} + 655 x + 81442266C8:C2C_8:C_2[ ]44[\ ]_{4}^{4}
3737 Copy content Toggle raw display Q37\Q_{37}x+35x + 35111100Trivial[ ][\ ]
Q37\Q_{37}x+35x + 35111100Trivial[ ][\ ]
Q37\Q_{37}x+35x + 35111100Trivial[ ][\ ]
37.1.2.1a1.2x2+74x^{2} + 74221111C2C_2[ ]2[\ ]_{2}
37.3.1.0a1.1x3+6x+35x^{3} + 6 x + 35113300C3C_3[ ]3[\ ]^{3}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)