Properties

Label 8.0.2807957097.2
Degree 88
Signature [0,4][0, 4]
Discriminant 28079570972807957097
Root discriminant 15.1715.17
Ramified primes 3,11,1313,11,131
Class number 11
Class group trivial
Galois group C2S4C_2 \wr S_4 (as 8T44)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17)
 
Copy content gp:K = bnfinit(y^8 - y^7 - 2*y^6 + 10*y^5 + 8*y^4 - 8*y^3 + 14*y^2 + 25*y + 17, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17)
 

x8x72x6+10x5+8x48x3+14x2+25x+17 x^{8} - x^{7} - 2x^{6} + 10x^{5} + 8x^{4} - 8x^{3} + 14x^{2} + 25x + 17 Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  88
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  [0,4][0, 4]
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   28079570972807957097 =311112131\medspace = 3^{11}\cdot 11^{2}\cdot 131 Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  15.1715.17
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  311/6111/21311/2284.48167129620223^{11/6}11^{1/2}131^{1/2}\approx 284.4816712962022
Ramified primes:   33, 1111, 131131 Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  Q(393)\Q(\sqrt{393})
Aut(K/Q)\Aut(K/\Q):   C2C_2
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over Q\Q.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator aa)

11, aa, a2a^{2}, a3a^{3}, a4a^{4}, a5a^{5}, a6a^{6}, 110436a7+8422609a6+14295218a59542609a4+2642609a32552609a214615218a304510436\frac{1}{10436}a^{7}+\frac{842}{2609}a^{6}+\frac{1429}{5218}a^{5}-\frac{954}{2609}a^{4}+\frac{264}{2609}a^{3}-\frac{255}{2609}a^{2}-\frac{1461}{5218}a-\frac{3045}{10436} Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  11
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order 11
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order 11
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  33
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   1 -1  (order 22) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   1032609a7932609a64432609a5+9112609a4+17992609a37002609a29312609a5552609\frac{103}{2609}a^{7}-\frac{93}{2609}a^{6}-\frac{443}{2609}a^{5}+\frac{911}{2609}a^{4}+\frac{1799}{2609}a^{3}-\frac{700}{2609}a^{2}-\frac{931}{2609}a-\frac{555}{2609}, 2682609a7902609a611022609a5+26492609a4+38452609a346332609a2+22132609a+109932609\frac{268}{2609}a^{7}-\frac{90}{2609}a^{6}-\frac{1102}{2609}a^{5}+\frac{2649}{2609}a^{4}+\frac{3845}{2609}a^{3}-\frac{4633}{2609}a^{2}+\frac{2213}{2609}a+\frac{10993}{2609}, 3215218a7+5012609a64752609a5+6472609a4+51212609a3+58752609a2+110752609a+296295218\frac{321}{5218}a^{7}+\frac{501}{2609}a^{6}-\frac{475}{2609}a^{5}+\frac{647}{2609}a^{4}+\frac{5121}{2609}a^{3}+\frac{5875}{2609}a^{2}+\frac{11075}{2609}a+\frac{29629}{5218} Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  115.904676759 115.904676759
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

lims1(s1)ζK(s)=(2r1(2π)r2RhwD(20(2π)4115.904676759122807957097(1.70449292909 \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 115.904676759 \cdot 1}{2\cdot\sqrt{2807957097}}\cr\approx \mathstrut & 1.70449292909 \end{aligned}

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - x^7 - 2*x^6 + 10*x^5 + 8*x^4 - 8*x^3 + 14*x^2 + 25*x + 17); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

C2S4C_2\wr S_4 (as 8T44):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 384
The 20 conjugacy class representatives for C2S4C_2 \wr S_4
Character table for C2S4C_2 \wr S_4

Intermediate fields

4.0.2673.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

pp 22 33 55 77 1111 1313 1717 1919 2323 2929 3131 3737 4141 4343 4747 5353 5959
Cycle type 32,12{\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{2} R 8{\href{/padicField/5.8.0.1}{8} } 42{\href{/padicField/7.4.0.1}{4} }^{2} R 4,2,12{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2} 32,12{\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2} 8{\href{/padicField/19.8.0.1}{8} } 42{\href{/padicField/23.4.0.1}{4} }^{2} 32,12{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2} 4,22{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2} 32,2{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} } 6,12{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2} 42{\href{/padicField/43.4.0.1}{4} }^{2} 42{\href{/padicField/47.4.0.1}{4} }^{2} 23,12{\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2} 4,22{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

ppLabelPolynomial ee ff cc Galois group Slope content
33 Copy content Toggle raw display 3.1.2.1a1.2x2+6x^{2} + 6221111C2C_2[ ]2[\ ]_{2}
3.2.3.10a1.5x6+6x5+18x4+32x3+54x2+60x+47x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 54 x^{2} + 60 x + 4733221010D6D_{6}[52]22[\frac{5}{2}]_{2}^{2}
1111 Copy content Toggle raw display 11.2.2.2a1.2x4+14x3+53x2+28x+15x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15222222C22C_2^2[ ]22[\ ]_{2}^{2}
11.4.1.0a1.1x4+8x2+10x+2x^{4} + 8 x^{2} + 10 x + 2114400C4C_4[ ]4[\ ]^{4}
131131 Copy content Toggle raw display 131.1.2.1a1.1x2+131x^{2} + 131221111C2C_2[ ]2[\ ]_{2}
131.6.1.0a1.1x6+2x4+66x3+4x2+22x+2x^{6} + 2 x^{4} + 66 x^{3} + 4 x^{2} + 22 x + 2116600C6C_6[ ]6[\ ]^{6}

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)