Properties

Label 2.16.54.30
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(54\)
Galois group $C_4:D_4$ (as 16T34)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 8 x^{15} + 12 x^{14} + 8 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 14\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification exponent $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $54$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\card{ \Aut(K/\Q_{ 2 }) }$: $4$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[2, 3, 7/2, 4]$

Intermediate fields

$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.4.9.6, 2.4.9.5, 2.4.11.11, 2.4.8.3, 2.4.11.12, 2.8.24.26, 2.8.24.33, 2.8.22.98

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 8 x^{15} + 12 x^{14} + 8 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 14 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_4:D_4$ (as 16T34)
Inertia group: $C_2^2:C_4$ (as 16T10)
Wild inertia group: $C_2^2:C_4$
Unramified degree: $2$
Tame degree: $1$
Wild slopes: $[2, 3, 7/2, 4]$
Galois mean slope: $27/8$
Galois splitting model:$x^{16} - 8 x^{15} + 24 x^{14} - 16 x^{13} - 96 x^{12} + 216 x^{11} + 184 x^{10} - 1072 x^{9} + 558 x^{8} + 2632 x^{7} - 5192 x^{6} + 2640 x^{5} + 2640 x^{4} - 4472 x^{3} + 2712 x^{2} - 880 x + 121$