Defining polynomial
\(x^{16} + 8 x^{15} + 12 x^{14} + 8 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 14\) |
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification exponent $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $54$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\card{ \Aut(K/\Q_{ 2 }) }$: | $4$ |
This field is not Galois over $\Q_{2}.$ | |
Visible slopes: | $[2, 3, 7/2, 4]$ |
Intermediate fields
$\Q_{2}(\sqrt{-5})$, $\Q_{2}(\sqrt{-2\cdot 5})$, $\Q_{2}(\sqrt{2})$, 2.4.9.6, 2.4.9.5, 2.4.11.11, 2.4.8.3, 2.4.11.12, 2.8.24.26, 2.8.24.33, 2.8.22.98 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Unramified/totally ramified tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: | \( x^{16} + 8 x^{15} + 12 x^{14} + 8 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 14 \) |