Properties

Label 2.8.30.51
Base \(\Q_{2}\)
Degree \(8\)
e \(8\)
f \(1\)
c \(30\)
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{8} + 8 x^{7} + 16 x^{6} + 28 x^{4} + 8 x^{2} + 26\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification exponent $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $30$
Discriminant root field: $\Q_{2}(\sqrt{-1})$
Root number: $-i$
$\card{ \Aut(K/\Q_{ 2 }) }$: $2$
This field is not Galois over $\Q_{2}.$
Visible slopes:$[3, 4, 19/4]$

Intermediate fields

$\Q_{2}(\sqrt{2\cdot 5})$, 2.4.11.19

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{8} + 8 x^{7} + 16 x^{6} + 28 x^{4} + 8 x^{2} + 26 \) Copy content Toggle raw display

Ramification polygon

Not computed

Invariants of the Galois closure

Galois group: $C_4^2:C_4$ (as 8T30)
Inertia group: $C_4^2:C_4$ (as 8T30)
Wild inertia group: $C_4^2:C_4$
Unramified degree: $1$
Tame degree: $1$
Wild slopes: $[2, 3, 7/2, 4, 17/4, 19/4]$
Galois mean slope: $137/32$
Galois splitting model:$x^{8} - 4 x^{6} - 114 x^{4} - 644 x^{2} - 49$