Basic invariants
Dimension: | $2$ |
Group: | $C_6\times S_3$ |
Conductor: | \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
Artin stem field: | Galois closure of 12.0.12950250637492224.2 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6\times S_3$ |
Parity: | odd |
Determinant: | 1.504.6t1.f.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.4536.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{12} - 4 x^{11} + 22 x^{10} - 48 x^{9} + 108 x^{8} - 132 x^{7} + 170 x^{6} - 140 x^{5} + 107 x^{4} + \cdots + 9 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{6} + x^{4} + 25x^{3} + 17x^{2} + 13x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 25 a^{5} + 4 a^{3} + 3 a^{2} + 10 a + 14 + \left(5 a^{5} + 12 a^{4} + 27 a^{3} + 19 a^{2} + 13 a + 27\right)\cdot 29 + \left(2 a^{5} + 13 a^{4} + 12 a^{3} + 21 a^{2} + 10 a + 18\right)\cdot 29^{2} + \left(26 a^{5} + 16 a^{4} + 8 a^{2} + 17 a + 20\right)\cdot 29^{3} + \left(9 a^{5} + 26 a^{4} + 12 a^{3} + 10 a^{2} + 8 a + 3\right)\cdot 29^{4} + \left(8 a^{5} + 15 a^{4} + 8 a^{3} + 15 a^{2} + 4 a + 23\right)\cdot 29^{5} + \left(11 a^{5} + a^{4} + 7 a^{3} + 13 a^{2} + 7 a + 28\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 2 }$ | $=$ | \( 22 a^{5} + 11 a^{4} + 24 a^{3} + 5 a^{2} + a + \left(a^{5} + 9 a^{4} + 18 a^{3} + 23 a^{2} + 4 a\right)\cdot 29 + \left(28 a^{5} + 20 a^{4} + 21 a^{3} + 13 a^{2} + 22 a + 20\right)\cdot 29^{2} + \left(17 a^{5} + 22 a^{4} + a^{3} + 10 a + 14\right)\cdot 29^{3} + \left(20 a^{5} + 8 a^{4} + 11 a^{3} + 20 a^{2} + 21 a + 1\right)\cdot 29^{4} + \left(27 a^{5} + 10 a^{4} + 21 a^{3} + 25 a^{2} + 27 a + 25\right)\cdot 29^{5} + \left(11 a^{5} + 16 a^{4} + 10 a^{2} + 9 a + 24\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 3 }$ | $=$ | \( 19 a^{5} + 5 a^{4} + 25 a^{3} + 15 a^{2} + 23 a + 4 + \left(24 a^{5} + 19 a^{4} + 4 a^{3} + 15 a^{2} + 6\right)\cdot 29 + \left(23 a^{5} + 23 a^{4} + 20 a^{3} + 23 a^{2} + 10 a + 6\right)\cdot 29^{2} + \left(23 a^{5} + 15 a^{4} + 6 a^{3} + 21 a^{2} + 6 a + 12\right)\cdot 29^{3} + \left(12 a^{5} + 19 a^{4} + 6 a^{3} + 4 a^{2} + 28 a + 16\right)\cdot 29^{4} + \left(23 a^{5} + 23 a^{4} + 8 a^{3} + 21 a^{2} + 20 a + 24\right)\cdot 29^{5} + \left(6 a^{5} + 19 a^{4} + 6 a^{3} + 16 a^{2} + 4 a + 6\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 4 }$ | $=$ | \( 6 a^{5} + a^{4} + 23 a^{2} + 14 a + 17 + \left(2 a^{5} + 21 a^{4} + 9 a^{3} + 19 a^{2} + 10 a + 4\right)\cdot 29 + \left(5 a^{5} + 22 a^{4} + 7 a^{3} + 22 a^{2} + 16 a + 8\right)\cdot 29^{2} + \left(16 a^{5} + 25 a^{4} + 19 a^{3} + 4 a^{2} + 4 a + 11\right)\cdot 29^{3} + \left(25 a^{5} + 4 a^{4} + 25 a^{3} + a^{2} + 2 a + 3\right)\cdot 29^{4} + \left(7 a^{5} + 5 a^{4} + 3 a^{3} + 16 a^{2} + 18 a + 27\right)\cdot 29^{5} + \left(7 a^{5} + 4 a^{4} + 9 a^{3} + 19 a^{2} + 6 a + 6\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 5 }$ | $=$ | \( 2 a^{5} + 15 a^{4} + 5 a^{3} + 23 a^{2} + 22 a + 27 + \left(17 a^{5} + 18 a^{4} + 28 a^{3} + 11 a^{2} + 24 a + 16\right)\cdot 29 + \left(25 a^{5} + 27 a^{4} + 4 a^{3} + 12 a^{2} + 8 a + 22\right)\cdot 29^{2} + \left(17 a^{5} + 9 a^{4} + 11 a^{3} + 23 a^{2} + 8 a\right)\cdot 29^{3} + \left(12 a^{5} + 8 a^{4} + 24 a^{3} + 28 a^{2} + 13 a + 19\right)\cdot 29^{4} + \left(14 a^{5} + 18 a^{3} + 6 a^{2} + 5 a + 9\right)\cdot 29^{5} + \left(23 a^{5} + 7 a^{4} + 13 a^{3} + 2 a^{2} + 23 a + 18\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 6 }$ | $=$ | \( 23 a^{5} + 3 a^{4} + 17 a^{3} + 5 a^{2} + 17 a + 3 + \left(14 a^{5} + 10 a^{4} + 15 a^{3} + 3 a^{2} + 6 a + 14\right)\cdot 29 + \left(13 a^{5} + 19 a^{4} + 5 a^{3} + 6 a^{2} + 5 a + 18\right)\cdot 29^{2} + \left(8 a^{5} + 6 a^{4} + 20 a^{3} + 18 a^{2} + 19 a\right)\cdot 29^{3} + \left(25 a^{5} + 12 a^{4} + 27 a^{3} + 10 a^{2} + a + 9\right)\cdot 29^{4} + \left(9 a^{5} + 26 a^{4} + 12 a^{3} + 3 a^{2} + 3 a + 26\right)\cdot 29^{5} + \left(28 a^{5} + 12 a^{4} + 4 a^{3} + 25 a^{2} + 10 a + 28\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 7 }$ | $=$ | \( 9 a^{5} + 7 a^{4} + 28 a^{3} + 13 a^{2} + 21 a + 13 + \left(8 a^{5} + 11 a^{4} + 22 a^{3} + 27 a^{2} + 13 a + 27\right)\cdot 29 + \left(9 a^{5} + 19 a^{4} + 8 a^{3} + 12 a^{2} + 28 a + 21\right)\cdot 29^{2} + \left(10 a^{5} + 3 a^{4} + 14 a^{3} + 12 a^{2} + 8 a + 13\right)\cdot 29^{3} + \left(4 a^{5} + 23 a^{4} + a^{3} + 16 a^{2} + 24 a + 17\right)\cdot 29^{4} + \left(12 a^{5} + 20 a^{4} + 17 a^{3} + 20 a^{2} + 24 a + 27\right)\cdot 29^{5} + \left(12 a^{5} + 3 a^{3} + 13 a^{2} + 11 a + 24\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 8 }$ | $=$ | \( 3 a^{5} + 16 a^{4} + 10 a^{3} + 19 a^{2} + 9 a + 7 + \left(4 a^{5} + 6 a^{4} + 18 a^{3} + 23 a^{2} + 21 a + 7\right)\cdot 29 + \left(4 a^{5} + 19 a^{4} + 2 a^{3} + 28 a\right)\cdot 29^{2} + \left(12 a^{5} + 20 a^{4} + 15 a^{3} + 16 a^{2} + 17 a + 5\right)\cdot 29^{3} + \left(6 a^{5} + 18 a^{4} + 5 a^{3} + 14 a^{2} + 24 a + 22\right)\cdot 29^{4} + \left(10 a^{5} + 26 a^{4} + 24 a^{3} + 10 a^{2} + 14 a + 3\right)\cdot 29^{5} + \left(23 a^{5} + 22 a^{4} + 4 a^{3} + 27 a^{2} + 19 a + 1\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 9 }$ | $=$ | \( 6 a^{5} + 22 a^{4} + 9 a^{3} + 9 a^{2} + 16 a + 3 + \left(10 a^{5} + 25 a^{4} + 3 a^{3} + 2 a^{2} + 24 a + 1\right)\cdot 29 + \left(8 a^{5} + 15 a^{4} + 4 a^{3} + 20 a^{2} + 11 a + 14\right)\cdot 29^{2} + \left(6 a^{5} + 27 a^{4} + 10 a^{3} + 23 a^{2} + 22 a + 7\right)\cdot 29^{3} + \left(14 a^{5} + 7 a^{4} + 10 a^{3} + 17 a + 7\right)\cdot 29^{4} + \left(14 a^{5} + 13 a^{4} + 8 a^{3} + 15 a^{2} + 21 a + 4\right)\cdot 29^{5} + \left(28 a^{5} + 19 a^{4} + 28 a^{3} + 21 a^{2} + 24 a + 19\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 10 }$ | $=$ | \( 28 a^{5} + 6 a^{4} + 3 a^{3} + 22 a^{2} + 17 a + 10 + \left(11 a^{5} + 2 a^{4} + 12 a^{3} + 26 a^{2} + 16 a + 21\right)\cdot 29 + \left(6 a^{5} + 10 a^{4} + 14 a^{3} + 11 a^{2} + 22 a + 3\right)\cdot 29^{2} + \left(20 a^{5} + 23 a^{4} + 24 a^{3} + 16 a^{2} + 21 a + 23\right)\cdot 29^{3} + \left(17 a^{5} + 15 a^{4} + 16 a^{3} + 25 a^{2} + a + 17\right)\cdot 29^{4} + \left(12 a^{5} + 2 a^{4} + 21 a^{3} + 19 a^{2} + 11 a + 23\right)\cdot 29^{5} + \left(16 a^{5} + 27 a^{4} + a^{3} + 7 a^{2} + 12 a + 17\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 11 }$ | $=$ | \( 26 a^{5} + 9 a^{4} + 16 a^{3} + 24 a^{2} + 24 a + 28 + \left(20 a^{5} + 10 a^{2} + 9 a + 7\right)\cdot 29 + \left(17 a^{5} + 16 a^{4} + 7 a^{3} + 25 a^{2} + 17 a + 3\right)\cdot 29^{2} + \left(2 a^{5} + 13 a^{4} + 15 a^{3} + 25 a^{2} + 23 a + 3\right)\cdot 29^{3} + \left(4 a^{5} + a^{4} + 3 a^{3} + 25 a^{2} + 23 a + 23\right)\cdot 29^{4} + \left(14 a^{5} + 13 a^{4} + 26 a^{3} + 7 a^{2} + 9 a + 26\right)\cdot 29^{5} + \left(4 a^{5} + 9 a^{4} + 27 a^{3} + 19 a^{2} + 15 a + 17\right)\cdot 29^{6} +O(29^{7})\) |
$r_{ 12 }$ | $=$ | \( 5 a^{5} + 21 a^{4} + 4 a^{3} + 13 a^{2} + 23 + \left(23 a^{5} + 8 a^{4} + 13 a^{3} + 19 a^{2} + 28 a + 10\right)\cdot 29 + \left(24 a^{4} + 6 a^{3} + 2 a^{2} + 20 a + 7\right)\cdot 29^{2} + \left(12 a^{5} + 16 a^{4} + 6 a^{3} + 2 a^{2} + 12 a + 3\right)\cdot 29^{3} + \left(20 a^{5} + 26 a^{4} + 15 a^{2} + 6 a + 4\right)\cdot 29^{4} + \left(18 a^{5} + 15 a^{4} + 3 a^{3} + 11 a^{2} + 12 a + 10\right)\cdot 29^{5} + \left(28 a^{5} + 3 a^{4} + 8 a^{3} + 25 a^{2} + 28 a + 7\right)\cdot 29^{6} +O(29^{7})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,10)(2,3)(4,7)(5,12)(6,11)(8,9)$ | $-2$ |
$3$ | $2$ | $(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$ | $0$ |
$3$ | $2$ | $(1,4)(2,9)(3,8)(5,6)(7,10)(11,12)$ | $0$ |
$1$ | $3$ | $(1,5,8)(2,7,11)(3,4,6)(9,10,12)$ | $2 \zeta_{3}$ |
$1$ | $3$ | $(1,8,5)(2,11,7)(3,6,4)(9,12,10)$ | $-2 \zeta_{3} - 2$ |
$2$ | $3$ | $(1,5,8)(9,10,12)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,8,5)(9,12,10)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,5,8)(2,11,7)(3,6,4)(9,10,12)$ | $-1$ |
$1$ | $6$ | $(1,12,8,10,5,9)(2,4,11,3,7,6)$ | $-2 \zeta_{3}$ |
$1$ | $6$ | $(1,9,5,10,8,12)(2,6,7,3,11,4)$ | $2 \zeta_{3} + 2$ |
$2$ | $6$ | $(1,9,5,10,8,12)(2,3)(4,7)(6,11)$ | $\zeta_{3}$ |
$2$ | $6$ | $(1,12,8,10,5,9)(2,3)(4,7)(6,11)$ | $-\zeta_{3} - 1$ |
$2$ | $6$ | $(1,9,5,10,8,12)(2,4,11,3,7,6)$ | $1$ |
$3$ | $6$ | $(1,3,8,6,5,4)(2,9,11,12,7,10)$ | $0$ |
$3$ | $6$ | $(1,4,5,6,8,3)(2,10,7,12,11,9)$ | $0$ |
$3$ | $6$ | $(1,11,8,7,5,2)(3,10,6,9,4,12)$ | $0$ |
$3$ | $6$ | $(1,2,5,7,8,11)(3,12,4,9,6,10)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.