Properties

Label 12.0.12950250637492224.2
Degree $12$
Signature $[0, 6]$
Discriminant $1.295\times 10^{16}$
Root discriminant \(22.01\)
Ramified primes $2,3,7$
Class number $4$
Class group [4]
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9)
 
gp: K = bnfinit(y^12 - 4*y^11 + 22*y^10 - 48*y^9 + 108*y^8 - 132*y^7 + 170*y^6 - 140*y^5 + 107*y^4 - 12*y^3 - 12*y^2 + 12*y + 9, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9)
 

\( x^{12} - 4 x^{11} + 22 x^{10} - 48 x^{9} + 108 x^{8} - 132 x^{7} + 170 x^{6} - 140 x^{5} + 107 x^{4} + \cdots + 9 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(12950250637492224\) \(\medspace = 2^{24}\cdot 3^{8}\cdot 7^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.01\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}3^{4/3}7^{1/2}\approx 45.79000429827802$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}$, $\frac{1}{27}a^{10}-\frac{1}{27}a^{9}-\frac{4}{27}a^{8}-\frac{1}{27}a^{7}-\frac{1}{27}a^{6}-\frac{13}{27}a^{5}+\frac{10}{27}a^{4}-\frac{1}{3}a^{3}+\frac{1}{9}a^{2}-\frac{1}{9}a-\frac{1}{3}$, $\frac{1}{2577231}a^{11}+\frac{8842}{859077}a^{10}-\frac{135620}{2577231}a^{9}+\frac{102187}{2577231}a^{8}+\frac{60565}{2577231}a^{7}+\frac{601687}{2577231}a^{6}-\frac{395084}{859077}a^{5}+\frac{6530}{48627}a^{4}+\frac{175183}{859077}a^{3}-\frac{95981}{286359}a^{2}+\frac{357608}{859077}a-\frac{6595}{286359}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{4}$, which has order $4$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{37892}{859077}a^{11}-\frac{754318}{2577231}a^{10}+\frac{3597577}{2577231}a^{9}-\frac{11779595}{2577231}a^{8}+\frac{24961642}{2577231}a^{7}-\frac{45388631}{2577231}a^{6}+\frac{54093136}{2577231}a^{5}-\frac{1249376}{48627}a^{4}+\frac{1954781}{95453}a^{3}-\frac{11588239}{859077}a^{2}+\frac{3264223}{859077}a+\frac{185548}{286359}$, $\frac{218251}{2577231}a^{11}-\frac{375689}{2577231}a^{10}+\frac{1085486}{859077}a^{9}-\frac{377681}{859077}a^{8}+\frac{969622}{286359}a^{7}+\frac{2511215}{859077}a^{6}+\frac{10372775}{2577231}a^{5}+\frac{271054}{48627}a^{4}+\frac{1215766}{859077}a^{3}+\frac{4984738}{859077}a^{2}+\frac{3258124}{859077}a+\frac{256801}{286359}$, $\frac{242558}{2577231}a^{11}-\frac{321980}{859077}a^{10}+\frac{4928627}{2577231}a^{9}-\frac{10410541}{2577231}a^{8}+\frac{18921905}{2577231}a^{7}-\frac{21205006}{2577231}a^{6}+\frac{1628735}{286359}a^{5}-\frac{293681}{48627}a^{4}-\frac{1632973}{859077}a^{3}+\frac{1554550}{286359}a^{2}-\frac{3187016}{859077}a-\frac{354995}{286359}$, $\frac{22544}{859077}a^{11}-\frac{223609}{2577231}a^{10}+\frac{1449631}{2577231}a^{9}-\frac{2549606}{2577231}a^{8}+\frac{7402825}{2577231}a^{7}-\frac{5859503}{2577231}a^{6}+\frac{11729590}{2577231}a^{5}-\frac{18668}{48627}a^{4}+\frac{816754}{286359}a^{3}+\frac{637349}{859077}a^{2}+\frac{626740}{859077}a+\frac{18829}{286359}$, $\frac{32965}{286359}a^{11}-\frac{36932}{95453}a^{10}+\frac{687032}{286359}a^{9}-\frac{1278257}{286359}a^{8}+\frac{3466585}{286359}a^{7}-\frac{3766847}{286359}a^{6}+\frac{2240491}{95453}a^{5}-\frac{91324}{5403}a^{4}+\frac{5825918}{286359}a^{3}-\frac{576487}{95453}a^{2}+\frac{579485}{95453}a+\frac{208730}{95453}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3833.8726435419103 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3833.8726435419103 \cdot 4}{2\cdot\sqrt{12950250637492224}}\cr\approx \mathstrut & 4.14579478575610 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 22*x^10 - 48*x^9 + 108*x^8 - 132*x^7 + 170*x^6 - 140*x^5 + 107*x^4 - 12*x^3 - 12*x^2 + 12*x + 9);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{7}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{7})\), 6.0.14224896.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: 18.6.12237489813936932340847607808.2, deg 18
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}$ R ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.2.0.1}{2} }^{6}$ ${\href{/padicField/19.3.0.1}{3} }^{4}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.24.79$x^{12} - 8 x^{11} + 14 x^{10} + 76 x^{9} + 138 x^{8} + 432 x^{7} + 688 x^{6} + 992 x^{5} + 1748 x^{4} + 1728 x^{3} + 1848 x^{2} + 1648 x + 968$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
\(7\) Copy content Toggle raw display 7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.28.2t1.a.a$1$ $ 2^{2} \cdot 7 $ \(\Q(\sqrt{7}) \) $C_2$ (as 2T1) $1$ $1$
* 1.56.2t1.b.a$1$ $ 2^{3} \cdot 7 $ \(\Q(\sqrt{-14}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.252.6t1.i.a$1$ $ 2^{2} \cdot 3^{2} \cdot 7 $ 6.6.144027072.1 $C_6$ (as 6T1) $0$ $1$
1.504.6t1.f.a$1$ $ 2^{3} \cdot 3^{2} \cdot 7 $ 6.0.1152216576.2 $C_6$ (as 6T1) $0$ $-1$
1.504.6t1.f.b$1$ $ 2^{3} \cdot 3^{2} \cdot 7 $ 6.0.1152216576.2 $C_6$ (as 6T1) $0$ $-1$
1.72.6t1.a.a$1$ $ 2^{3} \cdot 3^{2}$ 6.0.3359232.1 $C_6$ (as 6T1) $0$ $-1$
1.252.6t1.i.b$1$ $ 2^{2} \cdot 3^{2} \cdot 7 $ 6.6.144027072.1 $C_6$ (as 6T1) $0$ $1$
1.72.6t1.a.b$1$ $ 2^{3} \cdot 3^{2}$ 6.0.3359232.1 $C_6$ (as 6T1) $0$ $-1$
2.4536.3t2.a.a$2$ $ 2^{3} \cdot 3^{4} \cdot 7 $ 3.1.4536.1 $S_3$ (as 3T2) $1$ $0$
2.18144.6t3.g.a$2$ $ 2^{5} \cdot 3^{4} \cdot 7 $ 6.0.658409472.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.504.6t5.b.a$2$ $ 2^{3} \cdot 3^{2} \cdot 7 $ 6.0.14224896.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2016.12t18.c.a$2$ $ 2^{5} \cdot 3^{2} \cdot 7 $ 12.0.12950250637492224.2 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.2016.12t18.c.b$2$ $ 2^{5} \cdot 3^{2} \cdot 7 $ 12.0.12950250637492224.2 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.504.6t5.b.b$2$ $ 2^{3} \cdot 3^{2} \cdot 7 $ 6.0.14224896.1 $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.