Properties

Label 1127.471
Modulus $1127$
Conductor $161$
Order $66$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,27]))
 
pari: [g,chi] = znchar(Mod(471,1127))
 

Basic properties

Modulus: \(1127\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{161}(149,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1127.x

\(\chi_{1127}(30,\cdot)\) \(\chi_{1127}(67,\cdot)\) \(\chi_{1127}(79,\cdot)\) \(\chi_{1127}(214,\cdot)\) \(\chi_{1127}(226,\cdot)\) \(\chi_{1127}(263,\cdot)\) \(\chi_{1127}(373,\cdot)\) \(\chi_{1127}(410,\cdot)\) \(\chi_{1127}(471,\cdot)\) \(\chi_{1127}(520,\cdot)\) \(\chi_{1127}(557,\cdot)\) \(\chi_{1127}(569,\cdot)\) \(\chi_{1127}(618,\cdot)\) \(\chi_{1127}(655,\cdot)\) \(\chi_{1127}(704,\cdot)\) \(\chi_{1127}(753,\cdot)\) \(\chi_{1127}(802,\cdot)\) \(\chi_{1127}(912,\cdot)\) \(\chi_{1127}(1010,\cdot)\) \(\chi_{1127}(1096,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((346,442)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{9}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 1127 }(471, a) \) \(-1\)\(1\)\(e\left(\frac{16}{33}\right)\)\(e\left(\frac{29}{33}\right)\)\(e\left(\frac{32}{33}\right)\)\(e\left(\frac{5}{66}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{25}{33}\right)\)\(e\left(\frac{37}{66}\right)\)\(e\left(\frac{1}{66}\right)\)\(e\left(\frac{28}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1127 }(471,a) \;\) at \(\;a = \) e.g. 2