from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([26,46]))
pari: [g,chi] = znchar(Mod(9,1183))
χ1183(9,⋅)
χ1183(81,⋅)
χ1183(100,⋅)
χ1183(172,⋅)
χ1183(263,⋅)
χ1183(282,⋅)
χ1183(354,⋅)
χ1183(373,⋅)
χ1183(445,⋅)
χ1183(464,⋅)
χ1183(536,⋅)
χ1183(555,⋅)
χ1183(627,⋅)
χ1183(646,⋅)
χ1183(718,⋅)
χ1183(737,⋅)
χ1183(809,⋅)
χ1183(828,⋅)
χ1183(900,⋅)
χ1183(919,⋅)
χ1183(1010,⋅)
χ1183(1082,⋅)
χ1183(1101,⋅)
χ1183(1173,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(339,1016) → (e(31),e(3923))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ1183(9,a) |
1 | 1 | e(3910) | e(136) | e(3920) | e(3938) | e(3928) | e(1310) | e(1312) | e(133) | e(131) | e(3938) |