from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([52,56]))
pari: [g,chi] = znchar(Mod(900,1183))
χ1183(9,⋅)
χ1183(81,⋅)
χ1183(100,⋅)
χ1183(172,⋅)
χ1183(263,⋅)
χ1183(282,⋅)
χ1183(354,⋅)
χ1183(373,⋅)
χ1183(445,⋅)
χ1183(464,⋅)
χ1183(536,⋅)
χ1183(555,⋅)
χ1183(627,⋅)
χ1183(646,⋅)
χ1183(718,⋅)
χ1183(737,⋅)
χ1183(809,⋅)
χ1183(828,⋅)
χ1183(900,⋅)
χ1183(919,⋅)
χ1183(1010,⋅)
χ1183(1082,⋅)
χ1183(1101,⋅)
χ1183(1173,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(339,1016) → (e(32),e(3928))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ1183(900,a) |
1 | 1 | e(392) | e(139) | e(394) | e(3931) | e(3929) | e(132) | e(135) | e(1311) | e(138) | e(3931) |