Properties

Label 1183.bj
Modulus $1183$
Conductor $1183$
Order $39$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,46]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(9,1183))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1183\)
Conductor: \(1183\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(39\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: 39.39.253721406991290895924770503111827676888647505643788160579278763946491805765758913183386148271215912203961.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{1183}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{38}{39}\right)\)
\(\chi_{1183}(81,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{1183}(100,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{1183}(172,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{1183}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{1183}(282,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{1183}(354,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{1183}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{1183}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{1183}(464,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{1183}(536,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{1183}(555,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{39}\right)\)
\(\chi_{1183}(627,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{7}{39}\right)\)
\(\chi_{1183}(646,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{1183}(718,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{1183}(737,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{1183}(809,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{1183}(828,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{1183}(900,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{1183}(919,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{1183}(1010,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{1183}(1082,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{1183}(1101,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{1183}(1173,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{16}{39}\right)\)