Properties

Label 1309.41
Modulus 13091309
Conductor 13091309
Order 8080
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1309, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,24,55]))
 
Copy content pari:[g,chi] = znchar(Mod(41,1309))
 

Basic properties

Modulus: 13091309
Conductor: 13091309
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 8080
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1309.cs

χ1309(6,)\chi_{1309}(6,\cdot) χ1309(41,)\chi_{1309}(41,\cdot) χ1309(62,)\chi_{1309}(62,\cdot) χ1309(90,)\chi_{1309}(90,\cdot) χ1309(139,)\chi_{1309}(139,\cdot) χ1309(160,)\chi_{1309}(160,\cdot) χ1309(167,)\chi_{1309}(167,\cdot) χ1309(216,)\chi_{1309}(216,\cdot) χ1309(244,)\chi_{1309}(244,\cdot) χ1309(398,)\chi_{1309}(398,\cdot) χ1309(447,)\chi_{1309}(447,\cdot) χ1309(503,)\chi_{1309}(503,\cdot) χ1309(524,)\chi_{1309}(524,\cdot) χ1309(601,)\chi_{1309}(601,\cdot) χ1309(622,)\chi_{1309}(622,\cdot) χ1309(657,)\chi_{1309}(657,\cdot) χ1309(734,)\chi_{1309}(734,\cdot) χ1309(755,)\chi_{1309}(755,\cdot) χ1309(776,)\chi_{1309}(776,\cdot) χ1309(811,)\chi_{1309}(811,\cdot) χ1309(853,)\chi_{1309}(853,\cdot) χ1309(860,)\chi_{1309}(860,\cdot) χ1309(930,)\chi_{1309}(930,\cdot) χ1309(1014,)\chi_{1309}(1014,\cdot) χ1309(1042,)\chi_{1309}(1042,\cdot) χ1309(1091,)\chi_{1309}(1091,\cdot) χ1309(1119,)\chi_{1309}(1119,\cdot) χ1309(1161,)\chi_{1309}(1161,\cdot) χ1309(1168,)\chi_{1309}(1168,\cdot) χ1309(1196,)\chi_{1309}(1196,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ80)\Q(\zeta_{80})
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

(1123,596,309)(1123,596,309)(1,e(310),e(1116))(-1,e\left(\frac{3}{10}\right),e\left(\frac{11}{16}\right))

First values

aa 1-11122334455668899101012121313
χ1309(41,a) \chi_{ 1309 }(41, a) 1-111e(3740)e\left(\frac{37}{40}\right)e(4780)e\left(\frac{47}{80}\right)e(1720)e\left(\frac{17}{20}\right)e(1180)e\left(\frac{11}{80}\right)e(4180)e\left(\frac{41}{80}\right)e(3140)e\left(\frac{31}{40}\right)e(740)e\left(\frac{7}{40}\right)e(116)e\left(\frac{1}{16}\right)e(716)e\left(\frac{7}{16}\right)e(1120)e\left(\frac{11}{20}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ1309(41,a)   \chi_{ 1309 }(41,a) \; at   a=\;a = e.g. 2