sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1309, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,24,55]))
pari:[g,chi] = znchar(Mod(41,1309))
Modulus: | 1309 | |
Conductor: | 1309 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 80 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1309(6,⋅)
χ1309(41,⋅)
χ1309(62,⋅)
χ1309(90,⋅)
χ1309(139,⋅)
χ1309(160,⋅)
χ1309(167,⋅)
χ1309(216,⋅)
χ1309(244,⋅)
χ1309(398,⋅)
χ1309(447,⋅)
χ1309(503,⋅)
χ1309(524,⋅)
χ1309(601,⋅)
χ1309(622,⋅)
χ1309(657,⋅)
χ1309(734,⋅)
χ1309(755,⋅)
χ1309(776,⋅)
χ1309(811,⋅)
χ1309(853,⋅)
χ1309(860,⋅)
χ1309(930,⋅)
χ1309(1014,⋅)
χ1309(1042,⋅)
χ1309(1091,⋅)
χ1309(1119,⋅)
χ1309(1161,⋅)
χ1309(1168,⋅)
χ1309(1196,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1123,596,309) → (−1,e(103),e(1611))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ1309(41,a) |
−1 | 1 | e(4037) | e(8047) | e(2017) | e(8011) | e(8041) | e(4031) | e(407) | e(161) | e(167) | e(2011) |
sage:chi.jacobi_sum(n)