Basic properties
Modulus: | \(132300\) | |
Conductor: | \(11025\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(420\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{11025}(6403,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 132300.bad
\(\chi_{132300}(73,\cdot)\) \(\chi_{132300}(2413,\cdot)\) \(\chi_{132300}(3097,\cdot)\) \(\chi_{132300}(5437,\cdot)\) \(\chi_{132300}(6877,\cdot)\) \(\chi_{132300}(7633,\cdot)\) \(\chi_{132300}(9217,\cdot)\) \(\chi_{132300}(9973,\cdot)\) \(\chi_{132300}(11413,\cdot)\) \(\chi_{132300}(12997,\cdot)\) \(\chi_{132300}(13753,\cdot)\) \(\chi_{132300}(17533,\cdot)\) \(\chi_{132300}(18217,\cdot)\) \(\chi_{132300}(18973,\cdot)\) \(\chi_{132300}(21313,\cdot)\) \(\chi_{132300}(21997,\cdot)\) \(\chi_{132300}(22753,\cdot)\) \(\chi_{132300}(24337,\cdot)\) \(\chi_{132300}(25777,\cdot)\) \(\chi_{132300}(26533,\cdot)\) \(\chi_{132300}(28117,\cdot)\) \(\chi_{132300}(28873,\cdot)\) \(\chi_{132300}(31897,\cdot)\) \(\chi_{132300}(33337,\cdot)\) \(\chi_{132300}(35677,\cdot)\) \(\chi_{132300}(36433,\cdot)\) \(\chi_{132300}(37117,\cdot)\) \(\chi_{132300}(37873,\cdot)\) \(\chi_{132300}(40213,\cdot)\) \(\chi_{132300}(41653,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{420})$ |
Fixed field: | Number field defined by a degree 420 polynomial (not computed) |
Values on generators
\((66151,122501,15877,54001)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{7}{20}\right),e\left(\frac{41}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 132300 }(13753, a) \) | \(1\) | \(1\) | \(e\left(\frac{103}{105}\right)\) | \(e\left(\frac{223}{420}\right)\) | \(e\left(\frac{401}{420}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{257}{420}\right)\) | \(e\left(\frac{127}{210}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{163}{420}\right)\) | \(e\left(\frac{149}{210}\right)\) | \(e\left(\frac{37}{84}\right)\) |