Properties

Label 132300.28117
Modulus 132300132300
Conductor 1102511025
Order 420420
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(420))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,140,273,230]))
 
pari: [g,chi] = znchar(Mod(28117,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 1102511025
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 420420
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11025(9742,)\chi_{11025}(9742,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bad

χ132300(73,)\chi_{132300}(73,\cdot) χ132300(2413,)\chi_{132300}(2413,\cdot) χ132300(3097,)\chi_{132300}(3097,\cdot) χ132300(5437,)\chi_{132300}(5437,\cdot) χ132300(6877,)\chi_{132300}(6877,\cdot) χ132300(7633,)\chi_{132300}(7633,\cdot) χ132300(9217,)\chi_{132300}(9217,\cdot) χ132300(9973,)\chi_{132300}(9973,\cdot) χ132300(11413,)\chi_{132300}(11413,\cdot) χ132300(12997,)\chi_{132300}(12997,\cdot) χ132300(13753,)\chi_{132300}(13753,\cdot) χ132300(17533,)\chi_{132300}(17533,\cdot) χ132300(18217,)\chi_{132300}(18217,\cdot) χ132300(18973,)\chi_{132300}(18973,\cdot) χ132300(21313,)\chi_{132300}(21313,\cdot) χ132300(21997,)\chi_{132300}(21997,\cdot) χ132300(22753,)\chi_{132300}(22753,\cdot) χ132300(24337,)\chi_{132300}(24337,\cdot) χ132300(25777,)\chi_{132300}(25777,\cdot) χ132300(26533,)\chi_{132300}(26533,\cdot) χ132300(28117,)\chi_{132300}(28117,\cdot) χ132300(28873,)\chi_{132300}(28873,\cdot) χ132300(31897,)\chi_{132300}(31897,\cdot) χ132300(33337,)\chi_{132300}(33337,\cdot) χ132300(35677,)\chi_{132300}(35677,\cdot) χ132300(36433,)\chi_{132300}(36433,\cdot) χ132300(37117,)\chi_{132300}(37117,\cdot) χ132300(37873,)\chi_{132300}(37873,\cdot) χ132300(40213,)\chi_{132300}(40213,\cdot) χ132300(41653,)\chi_{132300}(41653,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ420)\Q(\zeta_{420})
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(13),e(1320),e(2342))(1,e\left(\frac{1}{3}\right),e\left(\frac{13}{20}\right),e\left(\frac{23}{42}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(28117,a) \chi_{ 132300 }(28117, a) 1111e(67105)e\left(\frac{67}{105}\right)e(37420)e\left(\frac{37}{420}\right)e(59420)e\left(\frac{59}{420}\right)e(1315)e\left(\frac{13}{15}\right)e(263420)e\left(\frac{263}{420}\right)e(103210)e\left(\frac{103}{210}\right)e(710)e\left(\frac{7}{10}\right)e(157420)e\left(\frac{157}{420}\right)e(101210)e\left(\frac{101}{210}\right)e(3184)e\left(\frac{31}{84}\right)
sage: chi.jacobi_sum(n)
 
χ132300(28117,a)   \chi_{ 132300 }(28117,a) \; at   a=\;a = e.g. 2