Properties

Label 132300.28117
Modulus $132300$
Conductor $11025$
Order $420$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(420))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,140,273,230]))
 
pari: [g,chi] = znchar(Mod(28117,132300))
 

Basic properties

Modulus: \(132300\)
Conductor: \(11025\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(420\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(9742,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bad

\(\chi_{132300}(73,\cdot)\) \(\chi_{132300}(2413,\cdot)\) \(\chi_{132300}(3097,\cdot)\) \(\chi_{132300}(5437,\cdot)\) \(\chi_{132300}(6877,\cdot)\) \(\chi_{132300}(7633,\cdot)\) \(\chi_{132300}(9217,\cdot)\) \(\chi_{132300}(9973,\cdot)\) \(\chi_{132300}(11413,\cdot)\) \(\chi_{132300}(12997,\cdot)\) \(\chi_{132300}(13753,\cdot)\) \(\chi_{132300}(17533,\cdot)\) \(\chi_{132300}(18217,\cdot)\) \(\chi_{132300}(18973,\cdot)\) \(\chi_{132300}(21313,\cdot)\) \(\chi_{132300}(21997,\cdot)\) \(\chi_{132300}(22753,\cdot)\) \(\chi_{132300}(24337,\cdot)\) \(\chi_{132300}(25777,\cdot)\) \(\chi_{132300}(26533,\cdot)\) \(\chi_{132300}(28117,\cdot)\) \(\chi_{132300}(28873,\cdot)\) \(\chi_{132300}(31897,\cdot)\) \(\chi_{132300}(33337,\cdot)\) \(\chi_{132300}(35677,\cdot)\) \(\chi_{132300}(36433,\cdot)\) \(\chi_{132300}(37117,\cdot)\) \(\chi_{132300}(37873,\cdot)\) \(\chi_{132300}(40213,\cdot)\) \(\chi_{132300}(41653,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((66151,122501,15877,54001)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{13}{20}\right),e\left(\frac{23}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 132300 }(28117, a) \) \(1\)\(1\)\(e\left(\frac{67}{105}\right)\)\(e\left(\frac{37}{420}\right)\)\(e\left(\frac{59}{420}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{263}{420}\right)\)\(e\left(\frac{103}{210}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{157}{420}\right)\)\(e\left(\frac{101}{210}\right)\)\(e\left(\frac{31}{84}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 132300 }(28117,a) \;\) at \(\;a = \) e.g. 2