from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([0,140,21,290]))
pari: [g,chi] = znchar(Mod(35677,132300))
χ132300(73,⋅)
χ132300(2413,⋅)
χ132300(3097,⋅)
χ132300(5437,⋅)
χ132300(6877,⋅)
χ132300(7633,⋅)
χ132300(9217,⋅)
χ132300(9973,⋅)
χ132300(11413,⋅)
χ132300(12997,⋅)
χ132300(13753,⋅)
χ132300(17533,⋅)
χ132300(18217,⋅)
χ132300(18973,⋅)
χ132300(21313,⋅)
χ132300(21997,⋅)
χ132300(22753,⋅)
χ132300(24337,⋅)
χ132300(25777,⋅)
χ132300(26533,⋅)
χ132300(28117,⋅)
χ132300(28873,⋅)
χ132300(31897,⋅)
χ132300(33337,⋅)
χ132300(35677,⋅)
χ132300(36433,⋅)
χ132300(37117,⋅)
χ132300(37873,⋅)
χ132300(40213,⋅)
χ132300(41653,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(66151,122501,15877,54001) → (1,e(31),e(201),e(4229))
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ132300(35677,a) |
1 | 1 | e(10579) | e(420169) | e(420383) | e(151) | e(420191) | e(210181) | e(109) | e(420229) | e(21047) | e(8419) |