Properties

Label 132300.22979
Modulus $132300$
Conductor $132300$
Order $630$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
 
M = H._module
 
chi = DirichletCharacter(H, M([315,35,63,75]))
 
pari: [g,chi] = znchar(Mod(22979,132300))
 

Basic properties

Modulus: \(132300\)
Conductor: \(132300\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(630\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bcb

\(\chi_{132300}(59,\cdot)\) \(\chi_{132300}(1319,\cdot)\) \(\chi_{132300}(1559,\cdot)\) \(\chi_{132300}(2819,\cdot)\) \(\chi_{132300}(3839,\cdot)\) \(\chi_{132300}(4079,\cdot)\) \(\chi_{132300}(5339,\cdot)\) \(\chi_{132300}(6359,\cdot)\) \(\chi_{132300}(7619,\cdot)\) \(\chi_{132300}(8879,\cdot)\) \(\chi_{132300}(9119,\cdot)\) \(\chi_{132300}(10139,\cdot)\) \(\chi_{132300}(10379,\cdot)\) \(\chi_{132300}(11639,\cdot)\) \(\chi_{132300}(12659,\cdot)\) \(\chi_{132300}(13919,\cdot)\) \(\chi_{132300}(14159,\cdot)\) \(\chi_{132300}(15179,\cdot)\) \(\chi_{132300}(15419,\cdot)\) \(\chi_{132300}(16439,\cdot)\) \(\chi_{132300}(17939,\cdot)\) \(\chi_{132300}(18959,\cdot)\) \(\chi_{132300}(20459,\cdot)\) \(\chi_{132300}(21479,\cdot)\) \(\chi_{132300}(21719,\cdot)\) \(\chi_{132300}(22739,\cdot)\) \(\chi_{132300}(22979,\cdot)\) \(\chi_{132300}(24239,\cdot)\) \(\chi_{132300}(25259,\cdot)\) \(\chi_{132300}(26519,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{315})$
Fixed field: Number field defined by a degree 630 polynomial (not computed)

Values on generators

\((66151,122501,15877,54001)\) → \((-1,e\left(\frac{1}{18}\right),e\left(\frac{1}{10}\right),e\left(\frac{5}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 132300 }(22979, a) \) \(-1\)\(1\)\(e\left(\frac{184}{315}\right)\)\(e\left(\frac{86}{315}\right)\)\(e\left(\frac{23}{210}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{463}{630}\right)\)\(e\left(\frac{251}{630}\right)\)\(e\left(\frac{11}{45}\right)\)\(e\left(\frac{3}{70}\right)\)\(e\left(\frac{41}{315}\right)\)\(e\left(\frac{59}{63}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 132300 }(22979,a) \;\) at \(\;a = \) e.g. 2