Properties

Label 132300.6359
Modulus 132300132300
Conductor 132300132300
Order 630630
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
 
M = H._module
 
chi = DirichletCharacter(H, M([315,595,441,285]))
 
pari: [g,chi] = znchar(Mod(6359,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 132300132300
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 630630
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.bcb

χ132300(59,)\chi_{132300}(59,\cdot) χ132300(1319,)\chi_{132300}(1319,\cdot) χ132300(1559,)\chi_{132300}(1559,\cdot) χ132300(2819,)\chi_{132300}(2819,\cdot) χ132300(3839,)\chi_{132300}(3839,\cdot) χ132300(4079,)\chi_{132300}(4079,\cdot) χ132300(5339,)\chi_{132300}(5339,\cdot) χ132300(6359,)\chi_{132300}(6359,\cdot) χ132300(7619,)\chi_{132300}(7619,\cdot) χ132300(8879,)\chi_{132300}(8879,\cdot) χ132300(9119,)\chi_{132300}(9119,\cdot) χ132300(10139,)\chi_{132300}(10139,\cdot) χ132300(10379,)\chi_{132300}(10379,\cdot) χ132300(11639,)\chi_{132300}(11639,\cdot) χ132300(12659,)\chi_{132300}(12659,\cdot) χ132300(13919,)\chi_{132300}(13919,\cdot) χ132300(14159,)\chi_{132300}(14159,\cdot) χ132300(15179,)\chi_{132300}(15179,\cdot) χ132300(15419,)\chi_{132300}(15419,\cdot) χ132300(16439,)\chi_{132300}(16439,\cdot) χ132300(17939,)\chi_{132300}(17939,\cdot) χ132300(18959,)\chi_{132300}(18959,\cdot) χ132300(20459,)\chi_{132300}(20459,\cdot) χ132300(21479,)\chi_{132300}(21479,\cdot) χ132300(21719,)\chi_{132300}(21719,\cdot) χ132300(22739,)\chi_{132300}(22739,\cdot) χ132300(22979,)\chi_{132300}(22979,\cdot) χ132300(24239,)\chi_{132300}(24239,\cdot) χ132300(25259,)\chi_{132300}(25259,\cdot) χ132300(26519,)\chi_{132300}(26519,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ315)\Q(\zeta_{315})
Fixed field: Number field defined by a degree 630 polynomial (not computed)

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(1718),e(710),e(1942))(-1,e\left(\frac{17}{18}\right),e\left(\frac{7}{10}\right),e\left(\frac{19}{42}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(6359,a) \chi_{ 132300 }(6359, a) 1-111e(23315)e\left(\frac{23}{315}\right)e(247315)e\left(\frac{247}{315}\right)e(121210)e\left(\frac{121}{210}\right)e(415)e\left(\frac{4}{15}\right)e(491630)e\left(\frac{491}{630}\right)e(307630)e\left(\frac{307}{630}\right)e(745)e\left(\frac{7}{45}\right)e(3170)e\left(\frac{31}{70}\right)e(202315)e\left(\frac{202}{315}\right)e(3163)e\left(\frac{31}{63}\right)
sage: chi.jacobi_sum(n)
 
χ132300(6359,a)   \chi_{ 132300 }(6359,a) \; at   a=\;a = e.g. 2