from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(630))
M = H._module
chi = DirichletCharacter(H, M([315,175,441,195]))
pari: [g,chi] = znchar(Mod(59,132300))
χ132300(59,⋅)
χ132300(1319,⋅)
χ132300(1559,⋅)
χ132300(2819,⋅)
χ132300(3839,⋅)
χ132300(4079,⋅)
χ132300(5339,⋅)
χ132300(6359,⋅)
χ132300(7619,⋅)
χ132300(8879,⋅)
χ132300(9119,⋅)
χ132300(10139,⋅)
χ132300(10379,⋅)
χ132300(11639,⋅)
χ132300(12659,⋅)
χ132300(13919,⋅)
χ132300(14159,⋅)
χ132300(15179,⋅)
χ132300(15419,⋅)
χ132300(16439,⋅)
χ132300(17939,⋅)
χ132300(18959,⋅)
χ132300(20459,⋅)
χ132300(21479,⋅)
χ132300(21719,⋅)
χ132300(22739,⋅)
χ132300(22979,⋅)
χ132300(24239,⋅)
χ132300(25259,⋅)
χ132300(26519,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(66151,122501,15877,54001) → (−1,e(185),e(107),e(4213))
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ132300(59,a) |
−1 | 1 | e(315218) | e(315232) | e(2101) | e(154) | e(63011) | e(630157) | e(4537) | e(7061) | e(31552) | e(6361) |