Properties

Label 132300.44201
Modulus $132300$
Conductor $1323$
Order $126$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,0,3]))
 
pari: [g,chi] = znchar(Mod(44201,132300))
 

Basic properties

Modulus: \(132300\)
Conductor: \(1323\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(126\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1323}(542,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.tl

\(\chi_{132300}(101,\cdot)\) \(\chi_{132300}(12101,\cdot)\) \(\chi_{132300}(12701,\cdot)\) \(\chi_{132300}(18401,\cdot)\) \(\chi_{132300}(19001,\cdot)\) \(\chi_{132300}(24701,\cdot)\) \(\chi_{132300}(25301,\cdot)\) \(\chi_{132300}(31001,\cdot)\) \(\chi_{132300}(31601,\cdot)\) \(\chi_{132300}(37301,\cdot)\) \(\chi_{132300}(37901,\cdot)\) \(\chi_{132300}(43601,\cdot)\) \(\chi_{132300}(44201,\cdot)\) \(\chi_{132300}(56201,\cdot)\) \(\chi_{132300}(56801,\cdot)\) \(\chi_{132300}(62501,\cdot)\) \(\chi_{132300}(63101,\cdot)\) \(\chi_{132300}(68801,\cdot)\) \(\chi_{132300}(69401,\cdot)\) \(\chi_{132300}(75101,\cdot)\) \(\chi_{132300}(75701,\cdot)\) \(\chi_{132300}(81401,\cdot)\) \(\chi_{132300}(82001,\cdot)\) \(\chi_{132300}(87701,\cdot)\) \(\chi_{132300}(88301,\cdot)\) \(\chi_{132300}(100301,\cdot)\) \(\chi_{132300}(100901,\cdot)\) \(\chi_{132300}(106601,\cdot)\) \(\chi_{132300}(107201,\cdot)\) \(\chi_{132300}(112901,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((66151,122501,15877,54001)\) → \((1,e\left(\frac{1}{18}\right),1,e\left(\frac{1}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 132300 }(44201, a) \) \(1\)\(1\)\(e\left(\frac{85}{126}\right)\)\(e\left(\frac{29}{126}\right)\)\(e\left(\frac{3}{7}\right)\)\(-1\)\(e\left(\frac{65}{126}\right)\)\(e\left(\frac{61}{126}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{19}{63}\right)\)\(e\left(\frac{23}{63}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 132300 }(44201,a) \;\) at \(\;a = \) e.g. 2