from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,7,0,111]))
pari: [g,chi] = znchar(Mod(82001,132300))
χ132300(101,⋅)
χ132300(12101,⋅)
χ132300(12701,⋅)
χ132300(18401,⋅)
χ132300(19001,⋅)
χ132300(24701,⋅)
χ132300(25301,⋅)
χ132300(31001,⋅)
χ132300(31601,⋅)
χ132300(37301,⋅)
χ132300(37901,⋅)
χ132300(43601,⋅)
χ132300(44201,⋅)
χ132300(56201,⋅)
χ132300(56801,⋅)
χ132300(62501,⋅)
χ132300(63101,⋅)
χ132300(68801,⋅)
χ132300(69401,⋅)
χ132300(75101,⋅)
χ132300(75701,⋅)
χ132300(81401,⋅)
χ132300(82001,⋅)
χ132300(87701,⋅)
χ132300(88301,⋅)
χ132300(100301,⋅)
χ132300(100901,⋅)
χ132300(106601,⋅)
χ132300(107201,⋅)
χ132300(112901,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(66151,122501,15877,54001) → (1,e(181),1,e(4237))
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ132300(82001,a) |
1 | 1 | e(126121) | e(12665) | e(76) | −1 | e(12611) | e(126115) | e(185) | e(2111) | e(6310) | e(6332) |