Properties

Label 132300.82001
Modulus 132300132300
Conductor 13231323
Order 126126
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,0,111]))
 
pari: [g,chi] = znchar(Mod(82001,132300))
 

Basic properties

Modulus: 132300132300
Conductor: 13231323
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 126126
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1323(1298,)\chi_{1323}(1298,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 132300.tl

χ132300(101,)\chi_{132300}(101,\cdot) χ132300(12101,)\chi_{132300}(12101,\cdot) χ132300(12701,)\chi_{132300}(12701,\cdot) χ132300(18401,)\chi_{132300}(18401,\cdot) χ132300(19001,)\chi_{132300}(19001,\cdot) χ132300(24701,)\chi_{132300}(24701,\cdot) χ132300(25301,)\chi_{132300}(25301,\cdot) χ132300(31001,)\chi_{132300}(31001,\cdot) χ132300(31601,)\chi_{132300}(31601,\cdot) χ132300(37301,)\chi_{132300}(37301,\cdot) χ132300(37901,)\chi_{132300}(37901,\cdot) χ132300(43601,)\chi_{132300}(43601,\cdot) χ132300(44201,)\chi_{132300}(44201,\cdot) χ132300(56201,)\chi_{132300}(56201,\cdot) χ132300(56801,)\chi_{132300}(56801,\cdot) χ132300(62501,)\chi_{132300}(62501,\cdot) χ132300(63101,)\chi_{132300}(63101,\cdot) χ132300(68801,)\chi_{132300}(68801,\cdot) χ132300(69401,)\chi_{132300}(69401,\cdot) χ132300(75101,)\chi_{132300}(75101,\cdot) χ132300(75701,)\chi_{132300}(75701,\cdot) χ132300(81401,)\chi_{132300}(81401,\cdot) χ132300(82001,)\chi_{132300}(82001,\cdot) χ132300(87701,)\chi_{132300}(87701,\cdot) χ132300(88301,)\chi_{132300}(88301,\cdot) χ132300(100301,)\chi_{132300}(100301,\cdot) χ132300(100901,)\chi_{132300}(100901,\cdot) χ132300(106601,)\chi_{132300}(106601,\cdot) χ132300(107201,)\chi_{132300}(107201,\cdot) χ132300(112901,)\chi_{132300}(112901,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ63)\Q(\zeta_{63})
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

(66151,122501,15877,54001)(66151,122501,15877,54001)(1,e(118),1,e(3742))(1,e\left(\frac{1}{18}\right),1,e\left(\frac{37}{42}\right))

First values

aa 1-1111111131317171919232329293131373741414343
χ132300(82001,a) \chi_{ 132300 }(82001, a) 1111e(121126)e\left(\frac{121}{126}\right)e(65126)e\left(\frac{65}{126}\right)e(67)e\left(\frac{6}{7}\right)1-1e(11126)e\left(\frac{11}{126}\right)e(115126)e\left(\frac{115}{126}\right)e(518)e\left(\frac{5}{18}\right)e(1121)e\left(\frac{11}{21}\right)e(1063)e\left(\frac{10}{63}\right)e(3263)e\left(\frac{32}{63}\right)
sage: chi.jacobi_sum(n)
 
χ132300(82001,a)   \chi_{ 132300 }(82001,a) \; at   a=\;a = e.g. 2