Properties

Label 132300.tl
Modulus $132300$
Conductor $1323$
Order $126$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132300, base_ring=CyclotomicField(126))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,49,0,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(101,132300))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(132300\)
Conductor: \(1323\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(126\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1323.ci
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{132300}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{44}{63}\right)\)
\(\chi_{132300}(12101,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{52}{63}\right)\)
\(\chi_{132300}(12701,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{47}{63}\right)\)
\(\chi_{132300}(18401,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{13}{63}\right)\)
\(\chi_{132300}(19001,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{17}{63}\right)\)
\(\chi_{132300}(24701,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{37}{63}\right)\)
\(\chi_{132300}(25301,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{50}{63}\right)\)
\(\chi_{132300}(31001,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{61}{63}\right)\)
\(\chi_{132300}(31601,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{20}{63}\right)\)
\(\chi_{132300}(37301,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{22}{63}\right)\)
\(\chi_{132300}(37901,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{53}{63}\right)\)
\(\chi_{132300}(43601,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{46}{63}\right)\)
\(\chi_{132300}(44201,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{23}{63}\right)\)
\(\chi_{132300}(56201,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{31}{63}\right)\)
\(\chi_{132300}(56801,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{26}{63}\right)\)
\(\chi_{132300}(62501,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{55}{63}\right)\)
\(\chi_{132300}(63101,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{59}{63}\right)\)
\(\chi_{132300}(68801,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{16}{63}\right)\)
\(\chi_{132300}(69401,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{29}{63}\right)\)
\(\chi_{132300}(75101,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{40}{63}\right)\)
\(\chi_{132300}(75701,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{62}{63}\right)\)
\(\chi_{132300}(81401,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{1}{63}\right)\)
\(\chi_{132300}(82001,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{32}{63}\right)\)
\(\chi_{132300}(87701,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{25}{63}\right)\)
\(\chi_{132300}(88301,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{2}{63}\right)\)
\(\chi_{132300}(100301,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{10}{63}\right)\)
\(\chi_{132300}(100901,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{5}{63}\right)\)
\(\chi_{132300}(106601,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{34}{63}\right)\)
\(\chi_{132300}(107201,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{38}{63}\right)\)
\(\chi_{132300}(112901,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{58}{63}\right)\)
\(\chi_{132300}(113501,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{8}{63}\right)\)