from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132300, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([0,49,0,3]))
chi.galois_orbit()
[g,chi] = znchar(Mod(101,132300))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(132300\) | |
Conductor: | \(1323\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(126\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 1323.ci | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{63})$ |
Fixed field: | Number field defined by a degree 126 polynomial (not computed) |
First 31 of 36 characters in Galois orbit
Character | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{132300}(101,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{126}\right)\) | \(e\left(\frac{113}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{23}{126}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{44}{63}\right)\) |
\(\chi_{132300}(12101,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{126}\right)\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{73}{126}\right)\) | \(e\left(\frac{53}{126}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{32}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) |
\(\chi_{132300}(12701,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{97}{126}\right)\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) |
\(\chi_{132300}(18401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{126}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{97}{126}\right)\) | \(e\left(\frac{29}{126}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) |
\(\chi_{132300}(19001,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{59}{126}\right)\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{17}{63}\right)\) |
\(\chi_{132300}(24701,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{121}{126}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) |
\(\chi_{132300}(25301,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{11}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{29}{126}\right)\) | \(e\left(\frac{97}{126}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) |
\(\chi_{132300}(31001,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{126}\right)\) | \(e\left(\frac{55}{126}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{61}{63}\right)\) |
\(\chi_{132300}(31601,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{125}{126}\right)\) | \(e\left(\frac{1}{126}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{20}{63}\right)\) |
\(\chi_{132300}(37301,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{95}{126}\right)\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{43}{126}\right)\) | \(e\left(\frac{83}{126}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{62}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) |
\(\chi_{132300}(37901,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{23}{126}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{95}{126}\right)\) | \(e\left(\frac{31}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) |
\(\chi_{132300}(43601,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{121}{126}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{59}{126}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) |
\(\chi_{132300}(44201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{29}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{23}{63}\right)\) |
\(\chi_{132300}(56201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{11}{126}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{31}{63}\right)\) |
\(\chi_{132300}(56801,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{126}\right)\) | \(e\left(\frac{41}{126}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{121}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) |
\(\chi_{132300}(62501,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{31}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{113}{126}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{55}{63}\right)\) |
\(\chi_{132300}(63101,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{47}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{101}{126}\right)\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) |
\(\chi_{132300}(68801,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{126}\right)\) | \(e\left(\frac{1}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{16}{63}\right)\) |
\(\chi_{132300}(69401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{53}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{55}{126}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) |
\(\chi_{132300}(75101,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{126}\right)\) | \(e\left(\frac{97}{126}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) |
\(\chi_{132300}(75701,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{126}\right)\) | \(e\left(\frac{59}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{41}{126}\right)\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{62}{63}\right)\) |
\(\chi_{132300}(81401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{126}\right)\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{41}{126}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{1}{63}\right)\) |
\(\chi_{132300}(82001,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{121}{126}\right)\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{11}{126}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{32}{63}\right)\) |
\(\chi_{132300}(87701,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) |
\(\chi_{132300}(88301,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{126}\right)\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) |
\(\chi_{132300}(100301,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{103}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{31}{126}\right)\) | \(e\left(\frac{95}{126}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{10}{63}\right)\) |
\(\chi_{132300}(100901,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{83}{126}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{47}{126}\right)\) | \(e\left(\frac{79}{126}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) |
\(\chi_{132300}(106601,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{101}{126}\right)\) | \(e\left(\frac{73}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{55}{126}\right)\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{50}{63}\right)\) | \(e\left(\frac{34}{63}\right)\) |
\(\chi_{132300}(107201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{38}{63}\right)\) |
\(\chi_{132300}(112901,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{113}{126}\right)\) | \(e\left(\frac{43}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{79}{126}\right)\) | \(e\left(\frac{47}{126}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) |
\(\chi_{132300}(113501,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{95}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(-1\) | \(e\left(\frac{113}{126}\right)\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{8}{63}\right)\) |