from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2070, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([11,33,3]))
pari: [g,chi] = znchar(Mod(1109,2070))
χ2070(149,⋅)
χ2070(329,⋅)
χ2070(389,⋅)
χ2070(419,⋅)
χ2070(479,⋅)
χ2070(569,⋅)
χ2070(659,⋅)
χ2070(779,⋅)
χ2070(839,⋅)
χ2070(1019,⋅)
χ2070(1049,⋅)
χ2070(1109,⋅)
χ2070(1229,⋅)
χ2070(1469,⋅)
χ2070(1739,⋅)
χ2070(1769,⋅)
χ2070(1859,⋅)
χ2070(1919,⋅)
χ2070(1949,⋅)
χ2070(2039,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(461,1657,1891) → (e(61),−1,e(221))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ2070(1109,a) |
1 | 1 | e(331) | e(3319) | e(6631) | e(227) | e(2215) | e(6665) | e(3320) | e(115) | e(6625) | e(3313) |