Properties

Label 2070.1019
Modulus $2070$
Conductor $1035$
Order $66$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,33,57]))
 
pari: [g,chi] = znchar(Mod(1019,2070))
 

Basic properties

Modulus: \(2070\)
Conductor: \(1035\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1035}(1019,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2070.br

\(\chi_{2070}(149,\cdot)\) \(\chi_{2070}(329,\cdot)\) \(\chi_{2070}(389,\cdot)\) \(\chi_{2070}(419,\cdot)\) \(\chi_{2070}(479,\cdot)\) \(\chi_{2070}(569,\cdot)\) \(\chi_{2070}(659,\cdot)\) \(\chi_{2070}(779,\cdot)\) \(\chi_{2070}(839,\cdot)\) \(\chi_{2070}(1019,\cdot)\) \(\chi_{2070}(1049,\cdot)\) \(\chi_{2070}(1109,\cdot)\) \(\chi_{2070}(1229,\cdot)\) \(\chi_{2070}(1469,\cdot)\) \(\chi_{2070}(1739,\cdot)\) \(\chi_{2070}(1769,\cdot)\) \(\chi_{2070}(1859,\cdot)\) \(\chi_{2070}(1919,\cdot)\) \(\chi_{2070}(1949,\cdot)\) \(\chi_{2070}(2039,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((461,1657,1891)\) → \((e\left(\frac{1}{6}\right),-1,e\left(\frac{19}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2070 }(1019, a) \) \(1\)\(1\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{31}{33}\right)\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{47}{66}\right)\)\(e\left(\frac{17}{33}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{16}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2070 }(1019,a) \;\) at \(\;a = \) e.g. 2