Properties

Label 216000.19531
Modulus 216000216000
Conductor 7200072000
Order 12001200
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(1200))
 
M = H._module
 
chi = DirichletCharacter(H, M([600,375,400,576]))
 
pari: [g,chi] = znchar(Mod(19531,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 7200072000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 12001200
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ72000(67531,)\chi_{72000}(67531,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.xj

χ216000(91,)\chi_{216000}(91,\cdot) χ216000(1171,)\chi_{216000}(1171,\cdot) χ216000(1531,)\chi_{216000}(1531,\cdot) χ216000(2611,)\chi_{216000}(2611,\cdot) χ216000(3331,)\chi_{216000}(3331,\cdot) χ216000(3691,)\chi_{216000}(3691,\cdot) χ216000(4411,)\chi_{216000}(4411,\cdot) χ216000(4771,)\chi_{216000}(4771,\cdot) χ216000(5491,)\chi_{216000}(5491,\cdot) χ216000(6571,)\chi_{216000}(6571,\cdot) χ216000(6931,)\chi_{216000}(6931,\cdot) χ216000(8011,)\chi_{216000}(8011,\cdot) χ216000(8731,)\chi_{216000}(8731,\cdot) χ216000(9091,)\chi_{216000}(9091,\cdot) χ216000(9811,)\chi_{216000}(9811,\cdot) χ216000(10171,)\chi_{216000}(10171,\cdot) χ216000(10891,)\chi_{216000}(10891,\cdot) χ216000(11971,)\chi_{216000}(11971,\cdot) χ216000(12331,)\chi_{216000}(12331,\cdot) χ216000(13411,)\chi_{216000}(13411,\cdot) χ216000(14131,)\chi_{216000}(14131,\cdot) χ216000(14491,)\chi_{216000}(14491,\cdot) χ216000(15211,)\chi_{216000}(15211,\cdot) χ216000(15571,)\chi_{216000}(15571,\cdot) χ216000(16291,)\chi_{216000}(16291,\cdot) χ216000(17371,)\chi_{216000}(17371,\cdot) χ216000(17731,)\chi_{216000}(17731,\cdot) χ216000(18811,)\chi_{216000}(18811,\cdot) χ216000(19531,)\chi_{216000}(19531,\cdot) χ216000(19891,)\chi_{216000}(19891,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1200)\Q(\zeta_{1200})
Fixed field: Number field defined by a degree 1200 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(516),e(13),e(1225))(-1,e\left(\frac{5}{16}\right),e\left(\frac{1}{3}\right),e\left(\frac{12}{25}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(19531,a) \chi_{ 216000 }(19531, a) 1-111e(91120)e\left(\frac{91}{120}\right)e(10511200)e\left(\frac{1051}{1200}\right)e(891200)e\left(\frac{89}{1200}\right)e(79100)e\left(\frac{79}{100}\right)e(131400)e\left(\frac{131}{400}\right)e(253600)e\left(\frac{253}{600}\right)e(6371200)e\left(\frac{637}{1200}\right)e(5375)e\left(\frac{53}{75}\right)e(293400)e\left(\frac{293}{400}\right)e(97600)e\left(\frac{97}{600}\right)
sage: chi.jacobi_sum(n)
 
χ216000(19531,a)   \chi_{ 216000 }(19531,a) \; at   a=\;a = e.g. 2