Properties

Label 216000.6571
Modulus 216000216000
Conductor 7200072000
Order 12001200
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(1200))
 
M = H._module
 
chi = DirichletCharacter(H, M([600,975,400,864]))
 
pari: [g,chi] = znchar(Mod(6571,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 7200072000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 12001200
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ72000(54571,)\chi_{72000}(54571,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.xj

χ216000(91,)\chi_{216000}(91,\cdot) χ216000(1171,)\chi_{216000}(1171,\cdot) χ216000(1531,)\chi_{216000}(1531,\cdot) χ216000(2611,)\chi_{216000}(2611,\cdot) χ216000(3331,)\chi_{216000}(3331,\cdot) χ216000(3691,)\chi_{216000}(3691,\cdot) χ216000(4411,)\chi_{216000}(4411,\cdot) χ216000(4771,)\chi_{216000}(4771,\cdot) χ216000(5491,)\chi_{216000}(5491,\cdot) χ216000(6571,)\chi_{216000}(6571,\cdot) χ216000(6931,)\chi_{216000}(6931,\cdot) χ216000(8011,)\chi_{216000}(8011,\cdot) χ216000(8731,)\chi_{216000}(8731,\cdot) χ216000(9091,)\chi_{216000}(9091,\cdot) χ216000(9811,)\chi_{216000}(9811,\cdot) χ216000(10171,)\chi_{216000}(10171,\cdot) χ216000(10891,)\chi_{216000}(10891,\cdot) χ216000(11971,)\chi_{216000}(11971,\cdot) χ216000(12331,)\chi_{216000}(12331,\cdot) χ216000(13411,)\chi_{216000}(13411,\cdot) χ216000(14131,)\chi_{216000}(14131,\cdot) χ216000(14491,)\chi_{216000}(14491,\cdot) χ216000(15211,)\chi_{216000}(15211,\cdot) χ216000(15571,)\chi_{216000}(15571,\cdot) χ216000(16291,)\chi_{216000}(16291,\cdot) χ216000(17371,)\chi_{216000}(17371,\cdot) χ216000(17731,)\chi_{216000}(17731,\cdot) χ216000(18811,)\chi_{216000}(18811,\cdot) χ216000(19531,)\chi_{216000}(19531,\cdot) χ216000(19891,)\chi_{216000}(19891,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1200)\Q(\zeta_{1200})
Fixed field: Number field defined by a degree 1200 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(1316),e(13),e(1825))(-1,e\left(\frac{13}{16}\right),e\left(\frac{1}{3}\right),e\left(\frac{18}{25}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(6571,a) \chi_{ 216000 }(6571, a) 1-111e(19120)e\left(\frac{19}{120}\right)e(7391200)e\left(\frac{739}{1200}\right)e(11211200)e\left(\frac{1121}{1200}\right)e(31100)e\left(\frac{31}{100}\right)e(59400)e\left(\frac{59}{400}\right)e(517600)e\left(\frac{517}{600}\right)e(10931200)e\left(\frac{1093}{1200}\right)e(1775)e\left(\frac{17}{75}\right)e(77400)e\left(\frac{77}{400}\right)e(433600)e\left(\frac{433}{600}\right)
sage: chi.jacobi_sum(n)
 
χ216000(6571,a)   \chi_{ 216000 }(6571,a) \; at   a=\;a = e.g. 2