from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(1200))
M = H._module
chi = DirichletCharacter(H, M([600,675,400,288]))
pari: [g,chi] = znchar(Mod(91,216000))
χ216000(91,⋅)
χ216000(1171,⋅)
χ216000(1531,⋅)
χ216000(2611,⋅)
χ216000(3331,⋅)
χ216000(3691,⋅)
χ216000(4411,⋅)
χ216000(4771,⋅)
χ216000(5491,⋅)
χ216000(6571,⋅)
χ216000(6931,⋅)
χ216000(8011,⋅)
χ216000(8731,⋅)
χ216000(9091,⋅)
χ216000(9811,⋅)
χ216000(10171,⋅)
χ216000(10891,⋅)
χ216000(11971,⋅)
χ216000(12331,⋅)
χ216000(13411,⋅)
χ216000(14131,⋅)
χ216000(14491,⋅)
χ216000(15211,⋅)
χ216000(15571,⋅)
χ216000(16291,⋅)
χ216000(17371,⋅)
χ216000(17731,⋅)
χ216000(18811,⋅)
χ216000(19531,⋅)
χ216000(19891,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (−1,e(169),e(31),e(256))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(91,a) |
−1 | 1 | e(120103) | e(12001063) | e(1200557) | e(10027) | e(400303) | e(600289) | e(1200481) | e(7514) | e(4009) | e(60061) |