from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(216000, base_ring=CyclotomicField(1800))
M = H._module
chi = DirichletCharacter(H, M([0,1125,1100,72]))
pari: [g,chi] = znchar(Mod(3641,216000))
χ216000(41,⋅)
χ216000(281,⋅)
χ216000(761,⋅)
χ216000(1481,⋅)
χ216000(1721,⋅)
χ216000(2441,⋅)
χ216000(2921,⋅)
χ216000(3161,⋅)
χ216000(3641,⋅)
χ216000(3881,⋅)
χ216000(4361,⋅)
χ216000(5081,⋅)
χ216000(5321,⋅)
χ216000(6041,⋅)
χ216000(6521,⋅)
χ216000(6761,⋅)
χ216000(7241,⋅)
χ216000(7481,⋅)
χ216000(7961,⋅)
χ216000(8681,⋅)
χ216000(8921,⋅)
χ216000(9641,⋅)
χ216000(10121,⋅)
χ216000(10361,⋅)
χ216000(10841,⋅)
χ216000(11081,⋅)
χ216000(11561,⋅)
χ216000(12281,⋅)
χ216000(12521,⋅)
χ216000(13241,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(114751,202501,136001,29377) → (1,e(85),e(1811),e(251))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ216000(3641,a) |
−1 | 1 | e(18077) | e(1800197) | e(18001483) | e(7544) | e(600257) | e(900641) | e(18001739) | e(22532) | e(600271) | e(900809) |