Properties

Label 216000.761
Modulus 216000216000
Conductor 108000108000
Order 18001800
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(1800))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1125,500,1368]))
 
pari: [g,chi] = znchar(Mod(761,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 108000108000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 18001800
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ108000(14261,)\chi_{108000}(14261,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.ye

χ216000(41,)\chi_{216000}(41,\cdot) χ216000(281,)\chi_{216000}(281,\cdot) χ216000(761,)\chi_{216000}(761,\cdot) χ216000(1481,)\chi_{216000}(1481,\cdot) χ216000(1721,)\chi_{216000}(1721,\cdot) χ216000(2441,)\chi_{216000}(2441,\cdot) χ216000(2921,)\chi_{216000}(2921,\cdot) χ216000(3161,)\chi_{216000}(3161,\cdot) χ216000(3641,)\chi_{216000}(3641,\cdot) χ216000(3881,)\chi_{216000}(3881,\cdot) χ216000(4361,)\chi_{216000}(4361,\cdot) χ216000(5081,)\chi_{216000}(5081,\cdot) χ216000(5321,)\chi_{216000}(5321,\cdot) χ216000(6041,)\chi_{216000}(6041,\cdot) χ216000(6521,)\chi_{216000}(6521,\cdot) χ216000(6761,)\chi_{216000}(6761,\cdot) χ216000(7241,)\chi_{216000}(7241,\cdot) χ216000(7481,)\chi_{216000}(7481,\cdot) χ216000(7961,)\chi_{216000}(7961,\cdot) χ216000(8681,)\chi_{216000}(8681,\cdot) χ216000(8921,)\chi_{216000}(8921,\cdot) χ216000(9641,)\chi_{216000}(9641,\cdot) χ216000(10121,)\chi_{216000}(10121,\cdot) χ216000(10361,)\chi_{216000}(10361,\cdot) χ216000(10841,)\chi_{216000}(10841,\cdot) χ216000(11081,)\chi_{216000}(11081,\cdot) χ216000(11561,)\chi_{216000}(11561,\cdot) χ216000(12281,)\chi_{216000}(12281,\cdot) χ216000(12521,)\chi_{216000}(12521,\cdot) χ216000(13241,)\chi_{216000}(13241,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1800)\Q(\zeta_{1800})
Fixed field: Number field defined by a degree 1800 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(58),e(518),e(1925))(1,e\left(\frac{5}{8}\right),e\left(\frac{5}{18}\right),e\left(\frac{19}{25}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(761,a) \chi_{ 216000 }(761, a) 1-111e(53180)e\left(\frac{53}{180}\right)e(8931800)e\left(\frac{893}{1800}\right)e(4271800)e\left(\frac{427}{1800}\right)e(1175)e\left(\frac{11}{75}\right)e(233600)e\left(\frac{233}{600}\right)e(329900)e\left(\frac{329}{900}\right)e(4911800)e\left(\frac{491}{1800}\right)e(8225)e\left(\frac{8}{225}\right)e(199600)e\left(\frac{199}{600}\right)e(821900)e\left(\frac{821}{900}\right)
sage: chi.jacobi_sum(n)
 
χ216000(761,a)   \chi_{ 216000 }(761,a) \; at   a=\;a = e.g. 2